Skip to main content

Corneal Storage, Hypothermia, and Organ Culture

  • Chapter
  • First Online:
Light and Specular Microscopy of the Cornea

Abstract

This chapter provides information about hypothermia and organ culture, the two basic approaches to storing corneas for grafting. Procedural simplicity and the immediate availability of tissue for transplantation make hypothermia the most widely used method. The recommended maximum storage time under hypothermic conditions (2–8 °C) is 14 days. Corneas placed in either vials or viewing chambers containing a commercially available storage solution and protected by a tamper-proof seal may be evaluated by slit lamp and specular microscopy prior to grafting. The main goal of hypothermic storage is to use low temperatures to suppress metabolic activity, inhibit cellular processes, and reduce energy demand in the tissue and thus maintain the original condition of the cornea. Macromolecules, such as dextran or chondroitin sulfate, are present in the medium control stromal hydration and prevent swelling of the cornea. Organ culture storage is used in about 65 % of European eye banks because of the possibility of performing a detailed assessment of the corneal endothelium and extending storage time up to 4–5 weeks. The corneas are generally maintained at 30–37 °C in media based on a minimal essential medium supplemented with fetal bovine serum, thus allowing the cornea to metabolize, that is, the endothelium can be repaired and the morphometric parameters improved. Similarly, the epithelium can be renewed from the limbus. Organ culture permits the detailed control of corneal quality, including the assessment of dead endothelial cells using light microscopy. However, during organ culture, the stroma typically becomes edematous, and the cornea increases in thickness. Shortly before the planned transplant, the cornea is therefore transferred to a medium containing macromolecular substances in which tissue dehydration and thinning occur. Microbiologic testing of the culture media ensures that microorganisms can be detected throughout the entire storage procedure. It appears that both storage methods result in similar graft survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McCarey BE, Kaufman HE. Improved corneal storage. Invest Ophthalmol. 1974;13:165–73.

    Google Scholar 

  2. Kaufman HE, Varnell ED, Kaufman S, Beuerman RW, Barron BA. K-Sol corneal preservation. Am J Ophthalmol. 1985;100:299–304.

    Google Scholar 

  3. Wilson SE, Bourne WM. Corneal preservation. Surv Ophthalmol. 1989;33:237–59.

    Google Scholar 

  4. Lindstrom RL, Kaufman HE, Skelnik DL, Laing RA, Lass JH, Musch DC, et al. Optisol corneal storage medium. Am J Ophthalmol. 1992;114:345–56.

    Google Scholar 

  5. Summerlin WT, Miller GE, Harris JE, Good RA. The organ-cultured cornea: an in vitro study. Invest Ophthalmol. 1973;12:176–80.

    Google Scholar 

  6. Doughman DJ, Van Horn D, Harris JE, Miller GE, Lindstrom R, Summerlin W, Good RA. Endothelium of the human organ cultured cornea: an electron microscopic study. Trans Am Ophthalmol Soc. 1973;71:304–24; discussion 325–28.

    Google Scholar 

  7. Doughman DJ, Harris JE, Schmitt MK. Penetrating keratoplasty using 37 C organ cultured cornea. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81:778–93.

    Google Scholar 

  8. Sperling S. Human corneal endothelium in organ culture. The influence of temperature and medium of incubation. Acta Ophthalmol (Copenh). 1979;57:269–76.

    Google Scholar 

  9. van der Want HJ, Pels E, Schuchard Y, Olesen B, Sperling S. Electron microscopy of cultured human corneas. Osmotic hydration and the use of a dextran fraction (dextran T 500) in organ culture. Arch Ophthalmol. 1983;101:1920–6.

    Google Scholar 

  10. Redbrake C, Salla S, Nilius R, Becker J, Reim M. A histochemical study of the distribution of dextran 500 in human corneas during organ culture. Curr Eye Res. 1997;16:405–11.

    Google Scholar 

  11. Pels E, Schuchard Y. Organ-culture preservation of human corneas. Doc Ophthalmol. 1983;56:147–53.

    Google Scholar 

  12. Stocker FW, King EH, Lucas DO, Georgiade N. A comparison of two different staining methods for evaluating corneal endothelial viability. Arch Ophthalmol. 1996;76:833–5.

    Google Scholar 

  13. Kirk AH, Hassard DT. Supravital staining of the corneal endothelium and evidence for a membrane on its surface. Can J Ophthalmol. 1969;4:405–15.

    Google Scholar 

  14. Sperling S. Evaluation of the endothelium of human donor corneas by induced dilation of intercellular spaces and trypan blue. Graefes Arch Clin Exp Ophthalmol. 1986;224:428–34.

    Google Scholar 

  15. Pels E, Beele H, Claerhout I. Eye bank issues: II. Preservation techniques: warm versus cold storage. Int Ophthalmol. 2008;28:155–63.

    Google Scholar 

  16. Patel HY, Brookes NH, Moffatt L, Sherwin T, Ormonde S, Clover GM, McGhee CN. The New Zealand National Eye Bank study 1991-2003: a review of the source and management of corneal tissue. Cornea. 2005;24:576–82.

    Google Scholar 

  17. Jeng BH. Preserving the cornea: corneal storage media. Curr Opin Ophthalmol. 2006;17:332–7.

    Google Scholar 

  18. EEBA Directory. European Eye Bank Association, Directory, 23rd ed. Venice, Italy: 2015.

    Google Scholar 

  19. EEBA Directory. European Eye Bank Association, Directory, 24th ed. Aarhus, Denmark; 2016.

    Google Scholar 

  20. Armitage WJ. Preservation of human cornea. Transfus Med Hemother. 2011;38:143–7.

    Google Scholar 

  21. Soni NG, Hoover CK, Da Silva H, Jeng BH. Preservation of the corneal epithelium in different corneal storage media. Cornea. 2015;34:1400–3.

    Google Scholar 

  22. Sobottka Ventura AC, Rodokanak-von Schrenk A, Hollstein K, Hagenah M, Böhnke M, Engelmann K. Endothelial cell death in organ-cultured donor corneae: the influence of traumatic versus nontraumatic cause of death. Graefes Arch Clin Exp Ophthalmol. 1997;235:230–3.

    Google Scholar 

  23. Yap C, Wong AM, Naor J, Rootman DS. Corneal temperature reversal after storage in Chen medium compared with Optisol GS. Cornea. 2001;20:501–4.

    Google Scholar 

  24. Kaufman HE, Beuerman RW, Steinemann TL, Thompson HW, Varnell ED. Optisol corneal storage medium. Arch Ophthalmol. 1991;109:864–8.

    Google Scholar 

  25. Canas N, Valero T, Villarroya M, Montell E, Verges J, Garcia AG, Lopez MG. Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase Akt. J Pharmacol Exp Ther. 2007;323:946–53.

    Google Scholar 

  26. Ayoubi MG, Armitage WJ, Easty DL. Corneal organ culture: effects of serum and a stabilised form of L-glutamine. Br J Ophthalmol. 1996;80:740–4.

    Google Scholar 

  27. Chen CH, Rama P, Chen AH, Franch A, Sulewski M, Orlin S, et al. Efficacy of media enriched with nonlactate-generating substrate for organ preservation: in vitro and clinical studies using the cornea model. Transplantation. 1999;67:800–8.

    Google Scholar 

  28. Moller-Pedersen T, Hartmann U, Moller HJ, Ehlers N, Engelmann K. Evaluation of potential organ culture media for eye banking using human donor corneas. Br J Ophthalmol. 2001;85:1075–9.

    Google Scholar 

  29. Wilhelmus KR, Stulting RD, Sugar J, Khan MM. Primary corneal graft failure. A national reporting system. Medical Advisory Board of the Eye Bank Association of America. Arch Ophthalmol. 1995;113:1497–1502.

    Google Scholar 

  30. Wagoner MD, Gonnah el S. Corneal graft survival after prolonged storage in Optisol-GS. Cornea. 2005;24:976–9.

    Google Scholar 

  31. Camposampiero D, Tiso R, Zanetti E, Ruzza A, Bruni A, Ponzin D. Improvement of human corneal endothelium in culture after prolonged hypothermic storage. Eur J Ophthalmol. 2003;13:745–51.

    Google Scholar 

  32. Haug K, Azqueta A, Johnsen-Soriano S, Shahdadfar A, Drolsum LK, Moe MC, et al. Donor cornea transfer from Optisol GS to organ culture storage: a two-step procedure to increase donor tissue lifespan. Acta Ophthalmol. 2013;91:219–25.

    Google Scholar 

  33. EBAA Medical Standards, Washington, D.C.: EBAA; 2015. www.restoresight.org

  34. Pels E, Schuchard Y. Organ culture in Netherlands. In: Brightbill FS, editor. Corneal surgery: theory, technique, and tissue. 2nd ed. St. Louis: Mosby Co; 1993. pp 622–32.

    Google Scholar 

  35. Pels E, Beekhuis WH, Völker-Dieben HJ. Long-term tissue storage for keratoplasty. In: Brightbill FS, editor. Corneal surgery: theory, technique, and tissue. 3rd ed. St. Louis: Mosby Co; 1999. pp 897–906.

    Google Scholar 

  36. Hoppenreijs VP, Pels E, Vrensen GF, Treffers WF. Corneal endothelium and growth factors. Surv Ophthalmol. 1996;41:155–64.

    Google Scholar 

  37. Barisani-Asenbauer T, Kaminski S, Schuster E, Dietrich A, Biowski R, Lukas J, Gosch-Baumgartner I. Impact of growth factors on morphometric corneal endothelial cell parameters and cell density in culture-preserved human corneas. Cornea. 1997;16:537–40.

    Google Scholar 

  38. Ventura AC, Bohnke M. Pentoxifylline influences the autocrine function of organ cultured donor corneas and enhances endothelial cell survival. Br J Ophthalmol. 2001;85:1110–14.

    Google Scholar 

  39. Lie JT, Lock FM, Mulder PG, van der Wees J, Melles GR. Floating device for donor corneas in organ culture. Br J Ophthalmol. 2008;92:1676–8.

    Google Scholar 

  40. Polse KA, Brand RJ, Cohen SR, Guillon M. Hypoxic effects on corneal morphology and function. Invest Ophthalmol Vis Sci. 1990;31:1542–54.

    Google Scholar 

  41. Thuret G, Manissolle C, Campos-Guyotat L, Guyotat D, Gain P. Animal compound-free medium and poloxamer for human corneal organ culture and deswelling. Invest Ophthalmol Vis Sci. 2005;46:816–22.

    Google Scholar 

  42. Zhao XC, Nakamura H, Subramanyam S, Stock LE, Gillette TE, Yoshikawa S, et al. Spontaneous and inheritable R555Q mutation in the TGFBI/BIGH3 gene in two unrelated families exhibiting Bowman’s layer corneal dystrophy. Ophthalmology. 2007;114:e39–46.

    Google Scholar 

  43. Smith VA, Johnson T. Evaluation of Megacell MEM as a storage medium for corneas destined for transplantation. Ophthalmic Res. 2010;43:18–25.

    Google Scholar 

  44. Means TL, Geroski DH, Hadley A, Lynn MJ, Edelhauser HF. Viability of human corneal endothelium following Optisol-GS storage. Arch Ophthalmol. 1995;113:805–9.

    Google Scholar 

  45. Means TL, Geroski DH, L’Hernault N, Grossniklaus HE, Kim T, Edelhauser HF. The corneal epithelium after optisol-GS storage. Cornea. 1966;15:599–605.

    Google Scholar 

  46. Greenbaum A, Hasany SM, Rootman D. Optisol vs Dexsol as storage media for preservation of human corneal epithelium. Eye (Lond). 2004;18:519–24.

    Google Scholar 

  47. Yuksel B, Uzunel UD, Kusbeci T. Endothelial cell viability of donor corneas preserved in Eusol-C corneal storage medium. Exp Clin Transplant. 2015; doi:10.6002/ect.2014.0295 [Epub ahead of print].

  48. Kanavi MR, Javadi MA, Chamani T, Fahim P, Javadi F. Comparing quantitative and qualitative indices of the donated corneas maintained in Optisol-GS with those kept in Eusol-C. Cell Tissue Bank. 2015;16:243–7.

    Google Scholar 

  49. Hsu JK, Cavanagh HD, Jester JV, Ma L, Petroll WM. Changes in corneal endothelial apical junctional protein organization after corneal cold storage. Cornea. 1999;18:712–20.

    Google Scholar 

  50. Albon J, Tullo AB, Aktar S, Boulton ME. Apoptosis in the endothelium of human corneas for transplantation. Invest Ophthalmol Vis Sci. 2000;41:2887–93.

    Google Scholar 

  51. Gain P, Thuret G, Chiquet C, Dumollard JM, Mosnier JF, Burillon C, et al. Value of two mortality assessment techniques for organ cultured corneal endothelium: trypan blue versus TUNEL technique. Br J Ophthalmol. 2002;86:306–10.

    Google Scholar 

  52. Fuchsluger TA, Jurkunas U, Kazlauskas A, Dana R. Anti-apoptotic gene therapy prolongs survival of corneal endothelial cells during storage. Gene Ther. 2011;18:778–87.

    Google Scholar 

  53. Crewe JM, Armitage WJ. Integrity of epithelium and endothelium in organ-cultured human corneas. Invest Ophthalmol Vis Sci. 2001;42:1757–61.

    Google Scholar 

  54. Doughman DJ, Van Horn D, Rodman WP, Byrnes P, Lindstrom RL. Human corneal endothelial layer repair during organ culture. Arch Ophthalmol. 1976;94:1791–96.

    Google Scholar 

  55. Sperling S. Early morphological changes in organ cultured human corneal endothelium. Acta Ophthalmol (Copenh). 1978;56:785–92.

    Google Scholar 

  56. Nejepinska J, Juklova K, Jirsova K. Organ culture, but not hypothermic storage, facilitates the repair of the corneal endothelium following mechanical damage. Acta Ophthalmol.2010;88:413–19.

    Google Scholar 

  57. Gan L, Fagerholm P, Ekenbark S. Expression of proliferating cell nuclear antigen in corneas kept in long term culture. Acta Ophthalmol Scand. 1998;76:308–13.

    Google Scholar 

  58. Armitage WJ, Crewe JM, Tullo AB. Corneal transplantation: how successful are we? Br J Ophthalmol. 2001;85:122.

    Google Scholar 

  59. Shanmuganathan VA, Rotchford AP, Tullo AB, Joseph A, Zambrano I, Dua HS. Epithelial proliferative potential of organ cultured corneoscleral rims; implications for allo-limbal transplantation and eye banking. Br J Ophthalmol. 2006;90:55–8.

    Google Scholar 

  60. Ardjomand N, Berghold A, Reich ME. Loss of corneal Langerhans cells during storage in organ culture medium, Optisol and McCarey-Kaufman medium. Eye (Lond). 1998;12 (Pt 1):134–8.

    Google Scholar 

  61. Al-Fakih A, Faltus V, Jirsova K. A decrease in the density of HLA-DR-positive cells occurs faster in corneas stored in organ culture than under hypothermic conditions. Ophthalmic Res. 2012;47:39–46.

    Google Scholar 

  62. Mayer WJ, Irschick UM, Moser P, Wurm M, Huemer HP, Romani N, Irschick EU. Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. Invest Ophthalmol Vis Sci. 2007;48:4459–67.

    Google Scholar 

  63. Simon M, Fellner P, El-Shabrawi Y, Ardjomand N. Influence of donor storage time on corneal allograft survival. Ophthalmology. 2004;111:1534–38.

    Google Scholar 

  64. Maier P, Heinzelmann S, Bohringer D, Reinhard T. Prolonged organ culture reduces the incidence of endothelial immune reactions. Eye (Lond). 2016;30:127–32.

    Google Scholar 

  65. Moller-Pedersen T, Moller HJ. Viability of human corneal keratocytes during organ culture. Acta Ophthalmol Scand. 1996;4:449–55.

    Google Scholar 

  66. Pels E, Schuchard Y. The effects of high molecular weight dextran on the preservation of human corneas. Cornea. 1984;3:219–27.

    Google Scholar 

  67. Borderie VM, Baudrimont M, Lopez M, Carvajal S, Laroche L. Evaluation of the deswelling period in dextran-containing medium after corneal organ culture. Cornea. 1997;16:215–23.

    Google Scholar 

  68. Armitage WJ, Easty DL. Factors influencing the suitability of organ-cultured corneas for transplantation. Invest Ophthalmol Vis Sci. 1997;38:16–24.

    Google Scholar 

  69. Frueh BE, Bohnke M. Corneal grafting of donor tissue preserved for longer than 4 weeks in organ-culture medium. Cornea. 1955;14:463–66.

    Google Scholar 

  70. EEBA Directory. European Eye Bank Association Directory, 22nd ed. Lausanne, Switzerland: 2014.

    Google Scholar 

  71. Hwang DG, Nakamura T, Trousdale MD, Smith TM. Combination antibiotic supplementation of corneal storage medium. Am J Ophthalmol. 1993;115:299–308.

    Google Scholar 

  72. Lass JH, Gordon JF, Sugar A, Norden RA, Reinhart WJ, Meyer RF, Soong HK. Optisol containing streptomycin. Am J Ophthalmol. 1993;116:503–4.

    Google Scholar 

  73. Wiffen SJ, Weston BC, Maguire LJ, Bourne WM. The value of routine donor corneal rim cultures in penetrating keratoplasty. Arch Ophthalmol. 1997;115:719–24.

    Google Scholar 

  74. Fontana L, Errani PG, Zerbinati A, Musacchi Y, Di Pede B, Tassinari G. Frequency of positive donor rim cultures after penetrating keratoplasty using hypothermic and organ-cultured donor corneas. Cornea. 2007;26:552–6.

    Google Scholar 

  75. Jhanji V, Tandon R, Sharma N, Titiyal JS, Satpathy G, Vajpayee RB. Whole globe enucleation versus in situ excision for donor corneal retrieval–a prospective comparative study. Cornea. 2008;27:1103–8.

    Google Scholar 

  76. Gomes JA, Dana MR, Dua HS, Goren MB, Laibson PR, Cohen EJ. Positive donor rim culture in penetrating keratoplasty. Cornea. 1995;14:457–62.

    Google Scholar 

  77. Wilhelmus KR, Hassan SS. The prognostic role of donor corneoscleral rim cultures in corneal transplantation. Ophthalmology. 2007;114:440–5.

    Google Scholar 

  78. Pels E, Schuchard Y. Tissue storage. E: Organ culture and endothelial evaluation as a preservation method for human corneas. In: Brightbill FS, editor. Corneal surgery. Theory, technique, and tissue. St. Louis: CV Mosby; 1986. pp 93–102.

    Google Scholar 

  79. Borderie VM, Laroche L. Microbiologic study of organ-cultured donor corneas. Transplantation. 1998;66:120–3.

    Google Scholar 

  80. Schroeter J, Wilkemeyer I, Herrlinger F, Pruss A. Comparison of in situ corneoscleral disc excision versus whole globe enucleation in cornea donors regarding microbial contamination in organ culture medium - a prospective monocentric study over 9 years. Transfus Med Hemother. 2012;39:391–4.

    Google Scholar 

  81. Kloess PM, Stulting RD, Waring GO 3rd, Wilson LA. Bacterial and fungal endophthalmitis after penetrating keratoplasty. Am J Ophthalmol. 1993;115:309–16.

    Google Scholar 

  82. Layer N, Cevallos V, Maxwell AJ, Hoover C, Keenan JD, Jeng BH. Efficacy and safety of antifungal additives in Optisol-GS corneal storage medium. JAMA Ophthalmol. 2014;132: 832–7.

    Google Scholar 

  83. Machado RA, Mannis MJ, Mandel HA, Feiz V, Schwab IR, Wang W, Wang JL. The relationship between first postoperative day epithelial status and eventual health of the ocular surface in penetrating keratoplasty. Cornea. 2002;21:574–7.

    Google Scholar 

  84. Chou L, Cohen EJ, Laibson PR, Rapuano CJ. Factors associated with epithelial defects after penetrating keratoplasty. Ophthalmic Surg. 1994;25:700–3.

    Google Scholar 

  85. Lass JH, Musch DC, Gordon JF, Laing RA. Epidermal growth factor and insulin use in corneal preservation. Results of a multi-center trial. The Corneal Preservation Study Group. Ophthalmology. 1994;101:352–9.

    Google Scholar 

  86. Naor J, Slomovic AR, Chipman M, Rootman DS. A randomized, double-masked clinical trial of Optisol-GS vs Chen medium for human corneal storage. Arch Ophthalmol. 2002;120:1280–5.

    Google Scholar 

  87. Gavrilov JC, Borderie VM, Laroche L, Delbosc B. Influencing factors on the suitability of organ-cultured corneas. Eye (Lond). 2010;24:1227–33.

    Google Scholar 

  88. Phillips PM, Terry MA, Shamie N, Chen ES, Hoar KL, Stoeger C, et al. Descemet’s stripping automated endothelial keratoplasty (DSAEK) using corneal donor tissue not acceptable for use in penetrating keratoplasty as a result of anterior stromal scars, pterygia, and previous corneal refractive surgical procedures. Cornea. 2009;28:871–6.

    Google Scholar 

  89. Parekh M, Salvalaio G, Ruzza A, Camposampiero D, Griffoni C, Zampini A, et al. Posterior lamellar graft preparation: a prospective review from an eye bank on current and future aspects. J Ophthalmol. 2013;769860.

    Google Scholar 

  90. Borderie VM, Touzeau O, Bourcier T, Allouch C, Laroche L. Graft reepithelialization after penetrating keratoplasty using organ-cultured donor tissue. Ophthalmology. 2006;113:2181–6.

    Google Scholar 

  91. Chen JY, Jones MN, Srinivasan S, Neal TJ, Armitage WJ, Kaye SB, Group NOTA, Contributing O. Endophthalmitis after penetrating keratoplasty. Ophthalmology. 2015;122:25–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Jirsova .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jirsova, K., Dahl, P., Armitage, W.J. (2017). Corneal Storage, Hypothermia, and Organ Culture. In: Light and Specular Microscopy of the Cornea. Springer, Cham. https://doi.org/10.1007/978-3-319-48845-5_3

Download citation

Publish with us

Policies and ethics