Skip to main content

The Cornea, Anatomy and Function

  • Chapter
  • First Online:
Light and Specular Microscopy of the Cornea

Abstract

This chapter introduces the structure and anatomy of the cornea in order to show the most important corneal features from an eye banker’s point of view. The aim is to describe all the corneal characteristics that may be important, particularly in assessing corneal quality for grafting. The cornea is a transparent avascular tissue responsible for more than two thirds of the total refractive power of the eye. It is organized into three cellular layers—the epithelium, the stroma, and the endothelium—and three interfaces—the basement membrane of the epithelium, Bowman layer, and Descemet membrane. The epithelium keeps the corneal surface smooth and provides a barrier against external biologic agents and chemical damage. The stroma provides structural strength, shape, and stability. It has a natural tendency to absorb fluid from the anterior chamber, which can potentially lead to corneal edema and decreased corneal transparency. The innermost layer of the cornea is the endothelium, a monolayer of hexagonal cells. Through ionic pumps and cotransporters, endothelial cells drain excess fluid out of the stroma into the anterior chamber, thus maintaining corneal transparency. The endothelium does not proliferate and therefore, given the importance of its function, its damage is potentially more serious than that to the other corneal layers. It is the most important layer for maintaining corneal transparency as well as for the long-term survival of corneal grafts. This is the corneal layer on which eye bankers have to focus during the preparation of a cornea for transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mishima S. Clinical investigations on the corneal endothelium-XXXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1982;93:1–29.

    Google Scholar 

  2. Nishida T, Saika S. Cornea. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea. 3rd ed. St. Louis, MO: Elsevier Mosby; 2011. p. 3–24.

    Google Scholar 

  3. Shimmura S, Kawakita T. Accessory cell populations in the cornea. Ocul Surf. 2006;4:74–80.

    Google Scholar 

  4. Barishak YR. Embryology of the eye and its adnexae. Dev Ophthalmol. 1992;24:1–142.

    Google Scholar 

  5. Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci. 2008;49:5279–86.

    Google Scholar 

  6. Dua HS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology. 2009;116:856–63.

    Google Scholar 

  7. Hanna C, Bicknell DS, O’Brien JE. Cell turnover in the adult human eye. Arch Ophthalmol. 1961;65:695–8.

    Google Scholar 

  8. Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.

    Google Scholar 

  9. Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229:560-1.

    Google Scholar 

  10. Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 1998;111(Pt 19):2867–75.

    Google Scholar 

  11. Ljubimov AV, Burgeson RE, Butkowski RJ, Michael AF, Sun TT, Kenney MC. Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest. 1995;72:461–73.

    Google Scholar 

  12. Wessel H, Anderson S, Fite D, Halvas E, Hempel J, SundarRaj N. Type XII collagen contributes to diversities in human corneal and limbal extracellular matrices. Invest Ophthalmol Vis Sci. 1997;38:2408–22.

    Google Scholar 

  13. Lin HC, Chang JH, Jain S, Gabison EE, Kure T, Kato T, et al. Matrilysin cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Invest Ophthalmol Vis Sci. 2001;42:2517–24.

    Google Scholar 

  14. Maatta M, Heljasvaara R, Sormunen R, Pihlajaniemi T, Autio-Harmainen H, Tervo T. Differential expression of collagen types XVIII/endostatin and XV in normal, keratoconus, and scarred human corneas. Cornea. 2006;25:341–9.

    Google Scholar 

  15. LeBleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood). 2007;232:1121–9.

    Google Scholar 

  16. Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 2007;32:2244–58.

    Google Scholar 

  17. Marshall GE, Konstas AG, Lee WR. Immunogold fine structural localization of extracellular matrix components in aged human cornea. I. Types I-IV collagen and laminin. Graefes Arch Clin Exp Ophthalmol. 1991;229:157–63.

    Google Scholar 

  18. Marshall GE, Konstas AG, Lee WR. Immunogold fine structural localization of extracellular matrix components in aged human cornea. II. Collagen types V and VI. Graefes Arch Clin Exp Ophthalmol. 1991;229:164–71.

    Google Scholar 

  19. Beuerman RW, Pedroza L. Ultrastructure of the human cornea. Microsc Res Tech. 1996;33:320–35.

    Google Scholar 

  20. Wilson SE, Hong JW. Bowman’s layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea. 2000;19:417–20.

    Google Scholar 

  21. Lagali N, Germundsson J, Fagerholm P. The role of Bowman’s layer in corneal regeneration after phototherapeutic keratectomy: a prospective study using in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2009;50:4192– 8.

    Google Scholar 

  22. Germundsson J, Karanis G, Fagerholm P, Lagali N. Age-related thinning of Bowman’s layer in the human cornea in vivo. Invest Ophthalmol Vis Sci. 2013;54:6143–9.

    Google Scholar 

  23. Kobayashi A, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy of Bowman’s layer of the cornea. Ophthalmology. 2006;113:2203–8.

    Google Scholar 

  24. Patel SV, Erie JC, McLaren JW, Bourne WM. Keratocyte density and recovery of subbasal nerves after penetrating keratoplasty and in late endothelial failure. Arch Ophthalmol. 2007;125:1693–8.

    Google Scholar 

  25. Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1–16.

    Google Scholar 

  26. Maurice DM. The structure and transparency of the cornea. J Physiol. 1957;136:263–86.

    Google Scholar 

  27. Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S. Transparency, swelling and scarring in the corneal stroma. Eye (Lond). 2003;17:927–36.

    Google Scholar 

  28. Newsome DA, Foidart JM, Hassell JR, Krachmer JH, Rodrigues MM, Katz SI. Detection of specific collagen types in normal and keratoconus corneas. Invest Ophthalmol Vis Sci. 1981;20:738–50.

    Google Scholar 

  29. Newsome DA, Gross J, Hassell JR. Human corneal stroma contains three distinct collagens. Invest Ophthalmol Vis Sci. 1982;22:376–81.

    Google Scholar 

  30. Meek KM, Fullwood NJ. Corneal and scleral collagens–a microscopist’s perspective. Micron. 2001;32:261–72.

    Google Scholar 

  31. Han M, Zickler L, Giese G, Walter M, Loesel FH, Bille JF. Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation. J Biomed Opt. 2004;9:760–6.

    Google Scholar 

  32. Muller LJ, Pels E, Schurmans LR, Vrensen GF. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res. 2004;78:493–501.

    Google Scholar 

  33. Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78:609–23.

    Google Scholar 

  34. Hirano K, Kobayashi M, Kobayashi K, Hoshino T, Awaya S. Experimental formation of 100 nm periodic fibrils in the mouse corneal stroma and trabecular meshwork. Invest Ophthalmol Vis Sci. 1989;30:869–74.

    Google Scholar 

  35. Bron AJ.The architecture of the corneal stroma. Br J Ophthalmol. 2001;85:379–81.

    Google Scholar 

  36. Funderburgh JL, Hevelone ND, Roth MR, Funderburgh ML, Rodrigues MR, Nirankari VS, Conrad GW. Decorin and biglycan of normal and pathologic human corneas. Invest Ophthalmol Vis Sci. 1998;39:1957–64.

    Google Scholar 

  37. Soriano ES, Campos MS, Michelacci YM. Effect of epithelial debridement on glycosaminoglycan synthesis by human corneal explants. Clin Chim Acta. 2000;295;41–62.

    Google Scholar 

  38. Scott JE. How rational histochemistry produced order out of chaos in the “amorphous ground substance” (with a little help from biochemistry, biophysics etc.). Eur J Histochem. 1998;42 Spec No:29–34.

    Google Scholar 

  39. Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21:1–14.

    Google Scholar 

  40. Stramer BM, Kwok MG, Farthing-Nayak PJ, Jung JC, Fini ME, Nayak RC. Monoclonal antibody (3G5)-defined ganglioside: cell surface marker of corneal keratocytes. Invest Ophthalmol Vis Sci. 2004;45:807–12.

    Google Scholar 

  41. Barbaro V, Di Iorio E, Ferrari S, Bisceglia L, Ruzza A, De Luca M, Pellegrini G. Expression of VSX1 in human corneal keratocytes during differentiation into myofibroblasts in response to wound healing. Invest Ophthalmol Vis Sci. 2006;47:5243–50.

    Google Scholar 

  42. Jakus MA. Studies on the cornea. II. The fine structure of Descement’s membrane. J Biophys Biochem Cytol. 1956;2(4 Suppl):243–52.

    Google Scholar 

  43. Wulle KG. Electron microscopy of the fetal development of the corneal endothelium and Descemet’s membrane of the human eye. Invest Ophthalmol. 1972;11:897–904.

    Google Scholar 

  44. Waring GO, Laibson PR, Rodrigues M. Clinical and pathologic alterations of Descemet’s membrane: with emphasis on endothelial metaplasia. Surv Ophthalmol. 1974;18:325–68.

    Google Scholar 

  45. Murphy C, Alvarado J, Juster R. Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci. 1984;25:1402–15.

    Google Scholar 

  46. Kenney MC, Nesburn AB, Burgeson RE, Butkowski RJ, Ljubimov AV. Abnormalities of the extracellular matrix in keratoconus corneas. Cornea. 1997;16:345–51.

    Google Scholar 

  47. Sawada H, Konomi H, Hirosawa K. Characterization of the collagen in the hexagonal lattice of Descemet’s membrane: its relation to type VIII collagen. J Cell Biol. 1990;110:219–27.

    Google Scholar 

  48. Tamura Y, Konomi H, Sawada H, Takashima S, Nakajima A. Tissue distribution of type VIII collagen in human adult and fetal eyes. Invest Ophthalmol Vis Sci. 1991;32:2636–44.

    Google Scholar 

  49. Sawada H. The fine structure of the bovine Descemet’s membrane with special reference to biochemical nature. Cell Tissue Res. 1982;226:241–55.

    Google Scholar 

  50. Svedbergh B, Bill A. Scanning electron microscopic studies of the corneal endothelium in man and monkeys. Acta Ophthalmol (Copenh). 1972;50:321–36.

    Google Scholar 

  51. Klintworth GK, Cummings TJ. Normal eye and ocular adnexa. In: Cummings TJ, Mills SE, editors. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p 349–52.

    Google Scholar 

  52. Waring GO 3rd, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982;89:531–90.

    Google Scholar 

  53. Hay ED. Development of the vertebrate cornea. Int Rev Cytol. 1980;63:263–322.

    Google Scholar 

  54. Gage PJ, Rhoades W, Prucka SK, Hjalt T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci. 2005;46:4200–8.

    Google Scholar 

  55. Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye (Lond). 2007;21:1310–18.

    Google Scholar 

  56. Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioessays. 2004;26:374–86.

    Google Scholar 

  57. Gage PJ, Qian M, Wu D, Rosenberg KI. The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev Biol. 2008;317:310–24.

    Google Scholar 

  58. Petroll WM, Hsu JK, Bean J, Cavanagh HD, Jester JV. The spatial organization of apical junctional complex-associated proteins in feline and human corneal endothelium. Curr Eye Res. 1999;18:10–19.

    Google Scholar 

  59. Valtink M, Gruschwitz R, Funk RH, Engelmann K. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs. 2008;187:286–94.

    Google Scholar 

  60. Zhu YT, Hayashida Y, Kheirkhah A, He H, Chen SY, Tseng SC. Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Invest Ophthalmol Vis Sci. 2008;49:3879–86.

    Google Scholar 

  61. Sakai R, Kinouchi T, Kawamoto S, Dana MR, Hamamoto T, Tsuru T, et al. Construction of human corneal endothelial cDNA library and identification of novel active genes. Invest Ophthalmol Vis Sci. 2002;43:1749–56.

    Google Scholar 

  62. Gottsch JD, Seitzman GD, Margulies EH, Bowers AL, Michels AJ, Saha S, et al. Gene expression in donor corneal endothelium. Arch Ophthalmol. 2003;121:252–8.

    Google Scholar 

  63. Foets BJ, van den Oord JJ, Volpes R, Missotten L. In situ immunohistochemical analysis of cell adhesion molecules on human corneal endothelial cells. Br J Ophthalmol. 1992;76:205–9.

    Google Scholar 

  64. Maurice DM. The location of the fluid pump in the cornea. J Physiol. 1972;221:43–54.

    Google Scholar 

  65. Shamsuddin AK, Nirankari VS, Purnell DM, Chang SH. Is the corneal posterior cell layer truly endothelial? Ophthalmology. 1986;93:1298–1303.

    Google Scholar 

  66. Fine S, Myron B, Yanoff MD. Ocular histology: a text and atlas. New York: Harper & Row; 1972.

    Google Scholar 

  67. Hayashi K, Sueishi K, Tanaka K, Inomata H. Immunohistochemical evidence of the origin of human corneal endothelial cells and keratocytes. Graefes Arch Clin Exp Ophthalmol. 1986;224:452–6.

    Google Scholar 

  68. Krachmer JH. Posterior polymorphous corneal dystrophy: a disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans Am Ophthalmol Soc. 1985;83:413–75.

    Google Scholar 

  69. Merjava S, Neuwirth A, Mandys V, Jirsova K. Cytokeratins 8 and 18 in adult human corneal endothelium. Exp Eye Res. 2009;89:426–31.

    Google Scholar 

  70. Zhang XY, Pettengell R, Nasiri N, Kalia V, Dalgleish AG, Barton DP. Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. J Soc Gynecol Investig. 1999;6 :333–40.

    Google Scholar 

  71. Jirsova K, Neuwirth A, Kalasova S, Vesela V, Merjava S. Mesothelial proteins are expressed in the human cornea. Exp Eye Res. 2012;91:623–9.

    Google Scholar 

  72. Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res. 2006;83:1309–16.

    Google Scholar 

  73. Tetsumoto K, Kubota T, Rummelt V, Holbach LM, Naumann GO. Epithelial transformation of the corneal endothelium in forceps birth-injury-associated keratopathy. Cornea. 1993;12:65–71.

    Google Scholar 

  74. Hidayat AA, Cockerham GC. Epithelial metaplasia of the corneal endothelium in Fuchs endothelial dystrophy. Cornea. 2006;25:956–9.

    Google Scholar 

  75. Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7.

    Google Scholar 

  76. Treffers WF. Human corneal endothelial wound repair. In vitro and in vivo. Ophthalmology. 1982;89:605–13.

    Google Scholar 

  77. Laing RA, Neubauer L, Oak SS, Kayne HL, Leibowitz HM. Evidence for mitosis in the adult corneal endothelium. Ophthalmology, 1984;91:1129–34.

    Google Scholar 

  78. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22:359–89.

    Google Scholar 

  79. Chen KH, Harris DL, Joyce NC. TGF-beta2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells. Invest Ophthalmol Vis Sci. 1999;40:2513–19.

    Google Scholar 

  80. Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea. 2001;20:731–7.

    Google Scholar 

  81. Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43:2152–9.

    Google Scholar 

  82. Enomoto K, Mimura T, Harris DL, Joyce NC. Age differences in cyclin-dependent kinase inhibitor expression and rb hyperphosphorylation in human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2006;47:4330–40.

    Google Scholar 

  83. Egan CA, Savre-Train I, Shay JW, Wilson SE, Bourne WM. Analysis of telomere lengths in human corneal endothelial cells from donors of different ages. Invest Ophthalmol Vis Sci. 1998;39:648–53.

    Google Scholar 

  84. Joyce NC, Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine. Cornea. 2004;23 (8 Suppl):S8–S19.

    Google Scholar 

  85. Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45:1743–51.

    Google Scholar 

  86. Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res. 2005;81:629–38.

    Google Scholar 

  87. Bahn CF, Falls HF, Varley GA, Meyer RF, Edelhauser HF, Bourne WM. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology. 1984;91:558–63.

    Google Scholar 

  88. Bahn CF, Glassman RM, MacCallum DK, Lillie JH, Meyer RF, Robinson BJ, Rich NM. Postnatal development of corneal endothelium. Invest Ophthalmol Vis Sci. 1986;27:44–51.

    Google Scholar 

  89. Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci. 1984;25:312–22.

    Google Scholar 

  90. Nucci P, Brancato R, Mets MB, Shevell SK. Normal endothelial cell density range in childhood. Arch Ophthalmol. 1990;108:247–8.

    Google Scholar 

  91. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997;38:779–82.

    Google Scholar 

  92. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4:671–8.

    Google Scholar 

  93. Pels E, Schuchard Y. Tissue storage. E: Organ culture and endothelial evaluation as a preservation method for human corneas. In: Brightbill FS, editor. Corneal surgery. Theory, technique, and tissue. St. Louis: CV Mosby; 1986. pp. 93–102.

    Google Scholar 

  94. Armitage WJ, Dick AD, Bourne WM. Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophthalmol Vis Sci. 2003;44:3326–31.

    Google Scholar 

  95. Amann J, Holley GP, Lee SB, Edelhauser HF. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol. 2003;135:584–90.

    Google Scholar 

  96. Kaufman HE, Capella JA, Robbins JE. The human corneal endothelium. Am J Ophthalmol. 1966;61:835–41.

    Google Scholar 

  97. Neubauer L, Baratz RS, Laing RA, Oak SS, Leibowitz HM. Coalescence of endothelial cells in the traumatized cornea. III. Correlation between specular and scanning electron microscopy. Arch Ophthalmol. 1984;102:921–2.

    Google Scholar 

  98. Ikebe H, Takamatsu T, Itoi M, Fujita S. Age-dependent changes in nuclear DNA content and cell size of presumably normal human corneal endothelium. Exp Eye Res.1986;43:251–8.

    Google Scholar 

  99. Doughman DJ, Van Horn D, Rodman WP, Byrnes P, Lindstrom RL. (1976) Human corneal endothelial layer repair during organ culture. Arch Ophthalmol. 1976;4:1791–6.

    Google Scholar 

  100. Hoppenreijs VP, Pels E, Vrensen GF, Treffers WF. Corneal endothelium and growth factors. Surv Ophthalmol. 1996;41:155–64.

    Google Scholar 

  101. Nejepinska J, Juklova K, Jirsova K. Organ culture, but not hypothermic storage, facilitates the repair of the corneal endothelium following mechanical damage. Acta Ophthalmol. 2010;88:413–19.

    Google Scholar 

  102. Cho KS, Lee EH, Choi JS, Joo CK. Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. Invest Ophthalmol Vis Sci. 1999;40:911–19.

    Google Scholar 

  103. Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.

    Google Scholar 

  104. McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.

    Google Scholar 

  105. Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS. Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res. 2009;88:747–51.

    Google Scholar 

  106. Yu WY, Sheridan C, Grierson I, Mason S, Kearns V, Lo AC, Wong D. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol. 2011;2011:412743.

    Google Scholar 

  107. He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 2012;30:2523–34.

    Google Scholar 

  108. Mimura T, Yamagami S, Yokoo S, Usui T, Amano S. Selective isolation of young cells from human corneal endothelium by the sphere-forming assay. Tissue Eng Part C Methods. 2010;16:803–12.

    Google Scholar 

  109. Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, Amano S. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46:1626–31.

    Google Scholar 

  110. Scott JE, Bosworth TR. A comparative biochemical and ultrastructural study of proteoglycan-collagen interactions in corneal stroma. Functional and metabolic implications. Biochem J. 1990;270:491–7.

    Google Scholar 

  111. Barfort P, Maurice D. Electrical potential and fluid transport across the corneal endothelium. Exp Eye Res. 1974;19:11–19.

    Google Scholar 

  112. Tervo T, Palkama A. Histochemical findings on sodium-potassium activated adenosine triphosphatase (NaK-ATPase) activity in the cornea. Acta Ophthalmol Suppl. 1974;123:88–93.

    Google Scholar 

  113. Mergler S, Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retin Eye Res. 2007;26:359–78.

    Google Scholar 

  114. Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S. Aquaporins in complex tissues: distribution of aquaporins 1-5 in human and rat eye. Am J Physiol. 1990;274:C1332–45.

    Google Scholar 

  115. Ing JJ, Ing HH, Nelson LR, Hodge DO, Bourne WM. Ten-year postoperative results of penetrating keratoplasty. Ophthalmology. 1998;105:1855–65.

    Google Scholar 

  116. Thuret G, Chiquet C, Bernal F, Acquart S, Romanet JP, Mouillon M, et al. Prospective, randomized clinical and endothelial evaluation of 2 storage times for cornea donor tissue in organ culture at 31 degrees C. Arch Ophthalmol. 2003;121:442–50.

    Google Scholar 

  117. Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol. 2008;19:82–93.

    Google Scholar 

  118. Gardner SJ, White N, Albon J, Knupp C, Kamma-Lorger CS, Meek KM. Measuring the refractive index of bovine corneal stromal cells using quantitative phase imaging. Biophys J. 2015;109:1592–9.

    Google Scholar 

  119. Beebe DC. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol. 2008;19:125–33.

    Google Scholar 

  120. Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, et al. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci. 2006;47:1571–80.

    Google Scholar 

  121. Chhabra M, Prausnitz JM, Radke CJ. Modeling corneal metabolism and oxygen transport during contact lens wear. Optom Vis Sci. 2009;86:454–66.

    Google Scholar 

  122. Richardson MR, Price MO, Price FW, Pardo JC, Grandin JC, You J, et al. Proteomic analysis of human aqueous humor using multidimensional protein identification technology. Mol Vis. 2009;15:2740–50.

    Google Scholar 

  123. Chowdhury UR, Madden BJ, Charlesworth MC, Fautsch MP. Proteome analysis of human aqueous humor. Invest Ophthalmol Vis Sci. 2010;51:4921–31.

    Google Scholar 

  124. Glasser DB, Matsuda M, Ellis JG, Edelhauser HF. Effects of intraocular irrigating solutions on the corneal endothelium after in vivo anterior chamber irrigation. Am J Ophthalmol. 1985;99:321–8.

    Google Scholar 

  125. Niederkorn JY. The immune privilege of corneal allografts. Transplantation. 1999;67:1503–8.

    Google Scholar 

  126. Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 2001;12:242–9.

    Google Scholar 

  127. Cursiefen C, Chen L, Dana MR, Streilein JW. Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 2003;22:273–81.

    Google Scholar 

  128. Chauhan SK, Dohlman TH, Dana R. Corneal lymphatics: role in ocular inflammation as inducer and responder of adaptive immunity. J Clin Cell Immunol. 2014;5:1000256.

    Google Scholar 

  129. Niederkorn JY. Immune mechanisms of corneal allograft rejection. Curr Eye Res. 2007;32:1005–16.

    Google Scholar 

  130. Chauhan SK, Saban DR, Lee HK, Dana R. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol. 2009;182:148–53.

    Google Scholar 

  131. Niederkorn JY. High-risk corneal allografts and why they lose their immune privilege. Curr Opin Allergy Clin Immunol. 2010;10:493–7.

    Google Scholar 

  132. Yamada Y, Sugita S, Horie S, Yamagami S, Mochizuki M. Mechanisms of immune suppression for CD8+ T cells by human corneal endothelial cells via membrane-bound TGFbeta. Invest Ophthalmol Vis Sci. 2010;51:2548–57.

    Google Scholar 

  133. Hamrah P, Huq SO, Liu Y, Zhang Q, Dana MR. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leukoc Biol. 2003;74:172–8.

    Google Scholar 

  134. Yamagami S, Yokoo S, Usui T, Yamagami H, Amano S, Ebihara N. Distinct populations of dendritic cells in the normal human donor corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46:4489–94.

    Google Scholar 

  135. Knickelbein JE, Watkins SC, McMenamin PG, Hendricks RL. Stratification of antigen-presenting cells within the normal cornea. Ophthalmol Eye Dis. 2009;1:45–54.

    Google Scholar 

  136. Hamrah P, Dana MR. Corneal antigen-presenting cells. Chem Immunol Allergy. 2007;92:58–70.

    Google Scholar 

  137. Mayer WJ, Irschick UM, Moser P, Wurm M, Huemer HP, Romani N, Irschick EU Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. Invest Ophthalmol Vis Sci. 2007;48:4459–67.

    Google Scholar 

  138. Hamrah P, Liu Y, Zhang Q, Dana MR. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol. 2003;121:1132–40.

    Google Scholar 

  139. Narumi M, Kashiwagi Y, Namba H, Ohe R, Yamakawa M, Yamashita H. Contribution of corneal neovascularization to dendritic cell migration into the central area during human corneal infection. PLoS One. 2014;9:e109859.

    Google Scholar 

  140. Pels E, van der Gaag R. HLA-A,B,C, and HLA-DR antigens and dendritic cells in fresh and organ culture preserved corneas. Cornea. 1984;3:231–9.

    Google Scholar 

  141. Ardjomand N, Berghold A, Reich ME. Loss of corneal Langerhans cells during storage in organ culture medium, Optisol and McCarey-Kaufman medium. Eye (Lond). 1998;12(Pt 1):134–8.

    Google Scholar 

  142. Al-Fakih A, Faltus V, Jirsova K. A decrease in the density of HLA-DR-positive cells occurs faster in corneas stored in organ culture than under hypothermic conditions. Ophthalmic Res. 2012;47:39–46.

    Google Scholar 

  143. Simon M, Fellner P, El-Shabrawi Y, Ardjomand N. Influence of donor storage time on corneal allograft survival. Ophthalmology. 111:1534–8.

    Google Scholar 

  144. Maier P, Heinzelmann S, Bohringer D, Reinhard T. Prolonged organ culture reduces the incidence of endothelial immune reactions. Eye (Lond). 2016;30:127–32.

    Google Scholar 

  145. Qazi Y, Hamrah P. Corneal allograft rejection: immunopathogenesis to therapeutics. J Clin Cell Immunol. 2013;(Suppl 9): pii: 006.

    Google Scholar 

  146. Yu T, Rajendran V, Griffith M, Forrester JV, Kuffova L. (2016) High-risk corneal allografts: A therapeutic challenge. World J Transplant. 2016;6:10–27.

    Google Scholar 

  147. Erie EA, McLaren JW, Kittleson KM, Patel SV, Erie JC, Bourne WM. Corneal subbasal nerve density: a comparison of two confocal microscopes. Eye Contact Lens. 2008;34:322–5.

    Google Scholar 

  148. Osborne NN. Neuromediators and their receptors (adrenergic and endothelin types) in the eye. Therapie. 1993;48:549–58.

    Google Scholar 

  149. Schmid E, Leierer J, Doblinger A, Laslop A, Fischer-Colbrie R, Humpel C, et al. Neurokinin a is a main constituent of sensory neurons innervating the anterior segment of the eye. Invest Ophthalmol Vis Sci. 2005;46:268–74.

    Google Scholar 

Download references

Acknowledgments

The author thanks Professor Thomas Fuchsluger, University Hospital Erlangen, Germany, and Professor Keith Meek, Cardiff University, UK, for their critical reading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Jirsova .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jirsova, K. (2017). The Cornea, Anatomy and Function. In: Light and Specular Microscopy of the Cornea. Springer, Cham. https://doi.org/10.1007/978-3-319-48845-5_1

Download citation

Publish with us

Policies and ethics