Structural and Functional Coevolution of Human Endogenous Retroviruses with Our Genome

  • Andrew Garazha
  • Maria Suntsova
  • Anton BuzdinEmail author


Human endogenous retroviruses (HERVs) and related genetic elements form 504 distinct families and occupy ~8 % of human genome. Modern experimental and bioinformatic techniques in biology made it possible to assess structural and functional impact of HERVs for shaping both the human genome and the molecular machinery of our cells. HERVs encode active retroviral proteins, which may play important roles in human physiology, and may be involved in the progression of cancer and human autoimmune, neurological and infectious diseases. In addition, HERVs regulate expression of the neighboring host genes and modify genomic regulatory landscape, e.g. by providing regulatory modules like transcription factor binding sites (TFBS). Indeed, recent bioinformatic profiling identified ~110,000 regulatory active HERV elements, which formed at least ~320,000 human TFBS. These and other peculiarities of HERVs might have played an important role in human evolution and speciation. In this chapter, we focus on the current progress in understanding of normal and pathological molecular niches of HERVs, on their implications in human evolution, normal physiology and disease. We also review the available databases dealing with various aspects of HERV genetics.


Human endogenous retrovirus Molecular evolution Human genome Human genetics Regulation of gene expression Human pathology Neurodegenerative disorders Infection Cancer Autoimmune diseases Placenta Transposable elements Methylation of DNA Transcription factor binding sites 


  1. Andersson AC, Svensson AC, Rolny C et al (1998) Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and neoplastic tissues. Int J Oncol 12(2):309–313PubMedGoogle Scholar
  2. Belshaw R, Pereira V, Katzourakis A et al (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA 101(14):4894–4899CrossRefPubMedPubMedCentralGoogle Scholar
  3. Buzdin A (2007) Human-specific endogenous retroviruses. Sci World J 7:1848–1868CrossRefGoogle Scholar
  4. Buzdin A, Khodosevich K, Mamedov I et al (2002) A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integrations of HERV-K LTRs. Genomics 79(3):413–422CrossRefPubMedGoogle Scholar
  5. Buzdin A, Ustyugova S, Khodosevich K et al (2003) Human-specific subfamilies of HERV-K (HML-2) long terminal repeats: three master genes were active simultaneously during branching of hominoid lineages. Genomics 81(2):149–156CrossRefPubMedGoogle Scholar
  6. Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E (2006) At least 50 % of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 80(21):10752–10762CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carlton VE, Harris BZ, Puffenberger EG et al (2003) Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 34(1):91–96CrossRefPubMedGoogle Scholar
  8. Chuong EB, Rumi MA, Soares MJ, Baker JC (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45(3):325–329CrossRefPubMedPubMedCentralGoogle Scholar
  9. Contreras-Galindo R, Gonzalez M, Almodovar-Camacho S et al (2006) A new real-time-RT-PCR for quantitation of human endogenous retroviruses type K (HERV-K) RNA load in plasma samples: increased HERV-K RNA titers in HIV-1 patients with HAART non-suppressive regimens. J Virol Methods 136(1–2):51–57CrossRefPubMedGoogle Scholar
  10. Emmer A, Staege MS, Kornhuber ME (2014) The retrovirus/superantigen hypothesis of multiple sclerosis. Cell Mol Neurobiol 34(8):1087–1096CrossRefPubMedGoogle Scholar
  11. Frendo JL, Olivier D, Cheynet V et al (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23(10):3566–3574CrossRefPubMedPubMedCentralGoogle Scholar
  12. Garazha A, Ivanova A, Suntsova M et al (2015) New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 14(9):1476–1484Google Scholar
  13. Gogvadze E, Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. CMLS 66(23):3727–3742CrossRefPubMedGoogle Scholar
  14. Gogvadze E, Stukacheva E, Buzdin A, Sverdlov E (2009) Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J Virol 83(12):6098–6105CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hohn O, Hanke K, Bannert N (2013) HERV-K(HML-2), the best preserved family of HERVs: endogenization, expression, and implications in health and disease. Front Oncol 3:246CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hughes JF, Coffin JM (2004) Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci USA 101(6):1668–1672CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hugin AW, Vacchio MS, Morse HC 3rd (1991) A virus-encoded “superantigen” in a retrovirus-induced immunodeficiency syndrome of mice. Science 252(5004):424–427CrossRefPubMedGoogle Scholar
  18. Jacques PE, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9(5):e1003504CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kahyo T, Tao H, Shinmura K et al (2013) Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus. Carcinogenesis 34(11):2531–2538CrossRefPubMedGoogle Scholar
  20. Kandel ES, Nudler E (2002) Template switching by RNA polymerase II in vivo. Evidence and implications from a retroviral system. Mol Cell 10(6):1495–1502CrossRefPubMedGoogle Scholar
  21. Khodosevich K, Lebedev Y, Sverdlov ED (2004) Large-scale determination of the methylation status of retrotransposons in different tissues using a methylation tags approach. Nucleic Acids Res 32(3):e31CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kovalskaya E, Buzdin A, Gogvadze E et al (2006) Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. Virology 346(2):373–378CrossRefPubMedGoogle Scholar
  23. Lee YN, Bieniasz PD (2007) Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3(1):e10CrossRefPubMedPubMedCentralGoogle Scholar
  24. Libbey JE, Cusick MF, Fujinami RS (2014) Role of pathogens in multiple sclerosis. Int Rev Immunol 33(4):266–283CrossRefPubMedGoogle Scholar
  25. Ling J, Pi W, Yu X et al (2003) The ERV-9 LTR enhancer is not blocked by the HS5 insulator and synthesizes through the HS5 site non-coding, long RNAs that regulate LTR enhancer function. Nucleic Acids Res 31(15):4582–4596CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lu X, Sachs F, Ramsay L et al (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21(4):423–425CrossRefPubMedGoogle Scholar
  27. Lyden TW, Johnson PM, Mwenda JM, Rote NS (1994) Ultrastructural characterization of endogenous retroviral particles isolated from normal human placentas. Biol Reprod 51(1):152–157CrossRefPubMedGoogle Scholar
  28. Manghera M, Ferguson J, Douville R (2015) ERVK polyprotein processing and reverse transcriptase expression in human cell line models of neurological disease. Viruses 7(1):320–332CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morozov VA, Dao Thi VL, Denner J (2013) The transmembrane protein of the human endogenous retrovirus–K (HERV-K) modulates cytokine release and gene expression. PLoS ONE 8(8):e70399CrossRefPubMedPubMedCentralGoogle Scholar
  30. Schlesinger S, Lee AH, Wang GZ et al (2013) Proviral silencing in embryonic cells is regulated by Yin Yang 1. Cell Rep 4(1):50–58CrossRefPubMedPubMedCentralGoogle Scholar
  31. Seifarth W, Frank O, Zeilfelder U, Spiess B et al (2005) Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 79(1):341–352CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shuvarikov A, Campbell IM, Dittwald P et al (2013) Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 34(10):1415–1423CrossRefPubMedPubMedCentralGoogle Scholar
  33. Suntsova M, Gogvadze EV, Salozhin S et al (2013) Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc Natl Acad Sci USA 110(48):19472–19477CrossRefPubMedPubMedCentralGoogle Scholar
  34. Suntsova M, Garazha A, Ivanova A et al (2015) Molecular functions of human endogenous retroviruses in health and disease. CMLS 72(19):3653–3675Google Scholar
  35. Sverdlov ED (2000) Retroviruses and primate evolution. BioEssays News Rev Mol Cellular Dev Biol 22(2):161–171CrossRefGoogle Scholar
  36. Trubetskoy DO, Zavalova LL, Akopov SB, Nikolaev LG (2002) Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography. J Chromatogr A 976(1–2):95–101CrossRefPubMedGoogle Scholar
  37. Turelli P, Castro-Diaz N, Marzetta F et al (2014) Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res 24(8):1260–1270CrossRefPubMedPubMedCentralGoogle Scholar
  38. van der Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19(10):530–536CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Andrew Garazha
    • 1
    • 2
  • Maria Suntsova
    • 1
    • 2
  • Anton Buzdin
    • 1
    • 3
    • 4
    Email author
  1. 1.Group for Genomic Regulation of Cell Signaling SystemsShemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
  2. 2.Laboratory of BioinformaticsD. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
  3. 3.Pathway PharmaceuticalsWan Chai, Hong KongHong Kong SAR
  4. 4.National Research Centre “Kurchatov Institute”Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and TechnologiesMoscowRussia

Personalised recommendations