Viability of Plant Seed Progeny from the East-Ural Radioactive Trace: Radiation and Weather Conditions

  • Elena V. AntonovaEmail author
  • Vera N. Pozolotina
  • Elina M. Karimullina


During 7–8 years, we investigated the quality of seed progeny of five herbaceous plant species (Bromopsis inermis (Leyss.) Holub, Leonurus quinquelobatus Gilib., Stellaria graminea L., Melandrium album (Mill.) Garcke, and Plantago major L.) growing for a long time under low level radiation exposure (Kyshtym accident, Russia). The variability of weather conditions was assessed in the study areas. Environmental factors (temperature, precipitation and their ratio in different months) modified the radiobiological effects. The necessity of particular weather conditions was revealed for the maturation of high-quality seeds of studied plants species.


Kyshtym accident Radioactive contamination East-Ural Radioactive Trace Low level radiation Weather condition Herbaceous plants Maturation Quality of seed progeny Long-term monitoring 



This work was done with financial support from Program of the Russian Foundation for Basic Research (projects 15-04-01023 and 15-34-20639), partly from Program of UB RAS (project 15-2-4-21).


  1. Aarkrog A, Dahlgaard H, Nielsen SP, Trapeznikov AV, Molchanova IV, Pozolotina VN, Karavaeva EN, Yushkov PI, Polikarpov GG (1997) Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995). Sci Total Environ 201(2):137–154. doi: 10.1016/S0048-9697(97)00098-3 CrossRefGoogle Scholar
  2. Antonova EV, Karimullina EM, Pozolotina VN (2013) Intraspecific variation in Melandrium album along a radioactive contamination gradient at the Eastern Ural Radioactive Trace. Russ J Ecol 44(1):18–27. doi: 10.1134/s1067413613010025 Google Scholar
  3. Antonova EV, Pozolotina VN, Karimullina EM (2014) Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace. Russ J Ecol 45(6):508–516. doi: 10.1134/s1067413614060034 CrossRefGoogle Scholar
  4. Biere A, Honders SC (2006) Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia. New Phytol 169(4):719–727. doi: 10.1111/j.1469-8137.2005.01511.x CrossRefPubMedGoogle Scholar
  5. Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification—heritable responses to environmental stress? Curr Opin Plant Biol 14(3):260–266. doi: 10.1016/j.pbi.2011.03.003 CrossRefPubMedGoogle Scholar
  6. Calow P, Forbes VE (1998) How do physiological responses to stress translate into ecological and evolutionary processes? Comp Biochem Phys A 120(1):11–16. doi: 10.1016/S1095-6433(98)10003-x CrossRefGoogle Scholar
  7. Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11(12):1304–1315. doi: 10.1111/j.1461-0248.2008.01253.x CrossRefPubMedGoogle Scholar
  8. Fischer BB, Pomati F, Eggen RIL (2013) The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity. Sci Total Environ 449:253–259. doi: 10.1016/j.scitotenv.2013.01.066 CrossRefPubMedGoogle Scholar
  9. Hinton T, Brechignac F (2005) A case against biomarkers as indicators of ecological risks: a problem of linkage. In: Bréchignac F, Howard BJ (eds) Scientific trends in radiological protection of the environment—ECORAD 2004. Aix-en-Provence, France, 2005. Tec & Doc, Lavoisier, Paris, France, 123–135Google Scholar
  10. Holmstrup M, Bindesbol A-M, Oostingh GJ, Duschl A, Scheil V, Kohler H-R, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408(18):3746–3762. doi: 10.1016/j.scitotenv.2009.10.067 CrossRefPubMedGoogle Scholar
  11. Karimullina E, Antonova E, Pozolotina V (2013) Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace. J Environ Radioact 124:113–120. doi: 10.1016/j.jenvrad.2013.04.003 CrossRefPubMedGoogle Scholar
  12. Mikhailovskaia LN, Molchanova IV, Karavaeva EN, Pozolotina VN, Tarasov OV (2011) Radioecological investigation of the soil cover of Eastern Urals State Radioactive Reserve and neighboring areas. Radiat Biol Radioecol 51(4):476–482Google Scholar
  13. Molchanova I, Mikhailovskaya L, Antonov K, Pozolotina V, Antonova E (2014) Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace. J Environ Radioact 138(6):238–248. doi: 10.1016/j.jenvrad.2014.09.004 CrossRefPubMedGoogle Scholar
  14. Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med 17(8):873–890. doi: 10.1002/(SICI)1097-0258(19980430) CrossRefPubMedGoogle Scholar
  15. Oliver EJ (2005) The encyclopedia of world climatology (Encyclopedia of Earth Sciences Series). The Springer, DordrechtCrossRefGoogle Scholar
  16. Pozolotina VN, Antonova EV, Karimullina EM (2010) Assessment of radiation impact on Stellaria graminea cenopopulations in the zone of the Eastern Ural Radioactive Trace. Russ J Ecol 41(6):459–468. doi: 10.1134/S1067413610060019 CrossRefGoogle Scholar
  17. Pozolotina VN, Molchanova IV, Mikhaylovskaya LN, Antonova EV, Karavaeva EN (2012) The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace. In: Gerada JG (ed) Radionuclides: sources, properties and hazards. Nova Science, New York, pp 1–22Google Scholar
  18. Qin GQ, Presley SM, Anderson TA, Gao WM, Maul JD (2011) Effects of predator cues on pesticide toxicity: toward an understanding of the mechanism of the interaction. Environ Toxicol Chem 30(8):1926–1934. doi: 10.1002/etc.575 CrossRefPubMedGoogle Scholar
  19. Romanov GN, Nikipelov BV, Drozhko EG The Kyshtym accident: Causes, scale and radiation characteristics. In: Seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtym, Windscale, Chernobyl. Commission of the European Communities, Luxemburg, 1–5 Oct 1990, pp 25–40Google Scholar
  20. Timofeeff-Ressovsky NW (1962) Some problems of radiation biogeocenology. Doctoral Thesis. Institute of Biology UB AS USSR, Sverdlovsk, 1–53Google Scholar
  21. Weiß CH (2007) StatSoft Inc, Tulsa, OK.: STATISTICA, Version 8. AStA. Adv Statist Anal 91(3):339–341. doi: 10.1007/s10182-007-0038-x CrossRefGoogle Scholar
  22. Wilson EB (1927) Probable inference, the law of succession and statistical inference. J Am Statist Assoc 22:209–212. doi: 10.2307/2276774 CrossRefGoogle Scholar
  23. Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160(6):705–711. doi: 10.1086/343872 PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Elena V. Antonova
    • 1
    Email author
  • Vera N. Pozolotina
    • 1
  • Elina M. Karimullina
    • 1
  1. 1.Institute of Plant and Animal Ecology UB RASEkaterinburgRussia

Personalised recommendations