The Animals of Chernobyl and Fukushima

  • Timothy A. MousseauEmail author
  • Anders P. Møller


Significant progress has been made in the past decade towards a better understanding of the genetic, developmental and ecological consequences of low-dose ionizing radiation (LDIR) on natural populations. Here, we review key studies of animals living under natural conditions in regions affected by the Chernobyl and Fukushima nuclear accidents. Most studies show significant genetic damage related to radiation exposure, with consequent effects on reproduction, development, fertility, and population growth rates. Of particular note are the findings of eye cataracts, tumors, smaller brain size, and fewer or abnormal sperm with the frequency of occurrence generally following a dose-response-like relationship with ambient radiation levels. All animal groups surveyed in Chernobyl showed smaller population abundances in regions of high radiation, although not all species responded to the same degree and a few species even give the appearance of having adapted to some degree. In the more radioactive regions of Fukushima Prefecture, Japan, bird abundances have steadily dropped since the time of the accident, with declines following a linear dose response based on a novel dose reconstruction approach. Overall, the parallels observed between radiation effects on animals in Chernobyl and Fukushima provide additional evidence for the significant ecological consequences of nuclear accidents, and ionizing radiation in general.


Chernobyl Fukushima Mutation Radiation 



We gratefully acknowledge the help and support of V. Bezrukov, O. Bondarenko, A. Bonisoli-Alquati, Z. Boratynski, I. Chizhevsky, N. Evangeliou, MA. Fitzpatrick, E. Flensted-Jensen, I. Galvan, S. Gaschak, D. Grodzinsky, H. Hagiwara, S. Jenkinson, S. Kasahara, K. Kawai, H. Kawai, K. Kawatsu, K. Koyama, I. Kozeretska, A. Kravets, A. Litvinchuk, T. Mappes, W. Mardal, L. Milinevski, S. Mitsui, B. Murray, M. Naboka, P. Nagarkatti, I. Nishiumi, J. Palms, H. Pastides, A. Peklo, E. Pysanets, A. Rozhok, G. Rudolfsen, S. Ruskovski, N. Saino, D.V. Shestopolov, H. Smith, H. Suzuki, K. Ueda, M. Wyatt, and many others. A very special thank you goes to T. Kanagawa and G. Milinevsky for their commitment and support to our research in Fukushima and Chernobyl.


  1. Allison GT (2010) Nuclear terrorism: the ultimate preventable catastrophe. Defense Against Terrorism Rev 3:97–106Google Scholar
  2. Bonisoli-Alquati A, Møller AP, Rudolfsen G, Saino N, Caprioli M, Ostermiller S, Mousseau TA (2011) The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica). Comp Biochem Phys Part A Mol Integr Physiol 159(2):105–112. doi: 10.1016/j.cbpa.2011.01.018 CrossRefGoogle Scholar
  3. Bonisoli-Alquati A, Koyama K, Tedeschi DJ, Kitamura W, Suzuki H, Ostermiller S, Arai E, Møller AP, Mousseau TA (2015) Abundance and genetic damage of barn swallows from Fukushima. Sci Rep 5:9432. doi: 10.1038/srep09432 CrossRefPubMedGoogle Scholar
  4. Deryabina TG, Kuchmel SV, Nagorskaya LL, Hinton TG, Beasley JC, Lerebours A, Smith JT (2015) Long-term census data reveal abundant wildlife populations at Chernobyl. Curr Biol 25:R824–R826. doi: 10.1016/j.cub.2015.08.017 CrossRefPubMedGoogle Scholar
  5. Einor D, Bonisoli-Alquati A, Costantini D, Mousseau TA, Møller AP (2016) Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Sci Total Environ 548–549:463–471Google Scholar
  6. Ellegren H, Lindgren G, Primmer CR, Møller AP (1997) Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–596CrossRefPubMedGoogle Scholar
  7. Galvan I, Mousseau TA, Møller AP (2011) Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration. Oecologia 165(4):827–835. doi: 10.1007/s00422-010-1860-5 CrossRefPubMedGoogle Scholar
  8. Galvan I, Bonisoli-Alquati A, Jenkinson S, Ghanem G, Wakamatsu K, Mousseau TA, Møller AP (2014) Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct Ecol 28:1387–1403. doi: 10.111/1365-2435.12283 Google Scholar
  9. Garnier-Laplace J, Geras’kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A (2012) Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact doi: 10.1016/j.jenvrad.2012.01.013 Google Scholar
  10. Garnier-Laplace J, Beaugelin-Seiller K, Della-Vedova C, Métivier JM, Ritz C, Mousseau TA, Møller AP (2015) Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships. Sci Rep 5Google Scholar
  11. Hermosell IG, Laskemoen T, Rowe M, Møller AP, Mousseau TA, Albrecht T, Lifjeld JT (2013) Patterns of sperm damage in Chernobyl passerine birds suggest a trade-off between sperm length and integrity. Biol Lett 9(5):20130530. doi: 10.1098/rsbl.2013.0530 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hiyama A, Nohara C, Kinjo S, Taira W, Gima S, Tanahara A, Otaki JM (2012) The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep 2:570. doi: 10.1038/srep00570 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hiyama A, Taira W, Nohara C, Iwasaki M, Kinjo S, Iwata M, Otaki JM (2015) Spatiotemporal abnormality dynamics of the pale grass blue butterfly: three years of monitoring (2011–2013) after the Fukushima nuclear accident. BMC Evol Biol 15:15. doi: 10.1186/s12862-015-0297-1 CrossRefPubMedPubMedCentralGoogle Scholar
  14. International Atomic Energy Agency (IAEA) (2006) Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum: 2003–2005, 2nd revised version, Vienna, available at:
  15. Kivisaari K, Boratynski Z, Calhim S, Lehmann P, Mappes T, Mousseau TA, Møller AP (2016) Cut to the chase: radiation effects on sperm structure at Chernobyl (In review)Google Scholar
  16. Lehmann P, Boratynski Z, Mappes T, Mousseau TA, Møller AP (2016) Cataract frequency, fecundity and background radiation in natural mammalian populations from Chernobyl. Sci Rep 6:19974Google Scholar
  17. Møller AP, Mousseau TA (2001) Albinism and phenotype of barn swallows Hirundo rustica from Chernobyl. Evolution 55(10):2097–2104CrossRefPubMedGoogle Scholar
  18. Møller AP, Mousseau TA (2003) Mutation and sexual selection: a test using barn swallows from Chernobyl. Evolution 57:2139–2146CrossRefPubMedGoogle Scholar
  19. Møller AP, Mousseau TA (2006) Biological consequences of Chernobyl: 20 years after the disaster. Trends Ecol Evol 21:200–207CrossRefPubMedGoogle Scholar
  20. Møller AP, Mousseau TA (2007a) Species richness and abundance of forest birds in relation to radiation at Chernobyl. Biol Lett 3:483–486CrossRefPubMedPubMedCentralGoogle Scholar
  21. Møller AP, Mousseau TA (2007b) Determinants of interspecific variation in population declines of birds after exposure to radiation at Chernobyl. J Appl Ecol 44:909–919CrossRefGoogle Scholar
  22. Møller AP, Mousseau TA (2008) Reduced abundance of raptors in radioactively contaminated areas near Chernobyl. J Ornithol 150(1):239–246CrossRefGoogle Scholar
  23. Møller AP, Mousseau TA (2009) Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident. Biol Lett R Soc 5(3):356–359CrossRefGoogle Scholar
  24. Møller AP, Mousseau TA (2011a) Conservation consequences of Chernobyl and other nuclear accidents. Biol Conserv 144:2787–2798CrossRefGoogle Scholar
  25. Møller AP, Mousseau TA (2011b) Efficiency of bio-indicators for low-level radiation under field conditions. Ecol Indic 11(2):424–430. doi: 10.1016/j.ecolind.2010.06.013 CrossRefGoogle Scholar
  26. Møller AP, Mousseau TA (2013a) Low-dose radiation, scientific scrutiny, and requirements for demonstrating effects. BMC Biol 11(92). doi: 10.1186/1741-7007-11-92
  27. Møller AP, Mousseau TA (2013b) The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol Rev 88:226–254CrossRefPubMedGoogle Scholar
  28. Møller AP, Mousseau TA (2015) Strong effects of ionizing radiation from Chernobyl on mutation rates. Sci Rep 5:8363. doi: 10.1038/srep08363 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Møller AP, Surai P, Mousseau TA (2004) Antioxidants, radiation and mutations in barn swallows from Chernobyl. Proc R Soc Lond B 272:247–252CrossRefGoogle Scholar
  30. Møller AP, Hobson KA, Mousseau TA, Peklo AM (2006) Chernobyl as a population sink for barn swallows: tracking dispersal using stable isotope profiles. Ecol Appl 16:1696–1705CrossRefPubMedGoogle Scholar
  31. Møller AP, Mousseau TA, de Lope F, Saino N (2007) Elevated frequency of abnormalities in barn swallows from Chernobyl. Biol Lett 3:414–417CrossRefPubMedPubMedCentralGoogle Scholar
  32. Møller AP, Mousseau TA, Lynnn C, Ostermiller S, Rudolfsen G (2008) Impaired swimming behavior and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat Res, Genet Toxicol Environ Mutagen 650:210–216CrossRefGoogle Scholar
  33. Møller AP, Erritzøe J, Karadas F, Mousseau TA (2010) Historical mutation rates predict susceptibility to radiation in Chernobyl birds. J Evol Biol 23(10):2132–2142. doi: 10.1111/j.1420-9101.2010.02074.x CrossRefPubMedGoogle Scholar
  34. Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2011) Chernobyl birds have smaller brains. PLOS One 6(2): Art. No. e16862. doi: 10.1371/journal.pone.0016862 Google Scholar
  35. Møller AP, Hagiwara A, Matsui S, Kasahara S, Kawatsu K, Nishiumi I, Suzuki H, Ueda K, Mousseau TA (2012a) Abundance of birds in Fukushima as judged from Chernobyl. Environ Pollut 164:36–39CrossRefPubMedGoogle Scholar
  36. Møller AP, Bonisoli-Alquati A, Rudolfsen G, Mousseau TA (2012b) Elevated mortality among birds in Chernobyl as judged from biased sex and age ratios. PLoS ONE 7(4):e35223CrossRefPubMedPubMedCentralGoogle Scholar
  37. Møller AP, Bonisoli-Alquati A, Mousseau TA (2013a) High frequencies of albinism and tumours in free-living birds at Chernobyl. Mutat Res 757:52–59CrossRefPubMedGoogle Scholar
  38. Møller AP, Nishiumi I, Suzuki H, Ueda K, Mousseau TA (2013b) Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecol Indic 14:75–81CrossRefGoogle Scholar
  39. Møller AP, Mousseau TA, Nishiumi I, Ueda K (2015a) Ecological differences in response of bird species to radioactivity from Chernobyl and Fukushima. J Ornithol. doi: 10.107/s10336-015-1173-x Google Scholar
  40. Møller AP, Nishiumi I, Mousseau TA (2015b) Cumulative effects on interspecific differences in response of birds to radioactivity from Fukushima. J Ornithol 156:S287–S296. doi: 10.1007/s10336-015-1197-2 Google Scholar
  41. Mousseau TA, Møller AP (2013) Elevated frequencies of cataracts in birds from Chernobyl. PLoS ONE 8(7):e66939. doi: 10.1371/journal.pone CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murase K, Murase J, Horie R, Endo K (2015) Effects of the Fukushima Daiishi nuclear accident on goshawk reproduction. Sci Rep 5:9405. doi: 10.1038/srep09405 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nakanishi TM, Tanoi K (2013) Agricultural implications of the Fukushima nuclear accident. Springer, Tokyo, JapanCrossRefGoogle Scholar
  44. Odum HT, Pigeon RF (1970) A tropical rain forest: a study of irradiation and ecology at El Verde, Puerto Rico. U.S. Atomic Energy Commission, Division of Technical Information, Oak Ridge, TNGoogle Scholar
  45. Parsh J, Ellegren H (2013) The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet 14:83–87CrossRefGoogle Scholar
  46. Taira W, Hiyama A, Nohara C, Sakauchi K, Otakai JM (2015) Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly. J Radiat Res 2015:1–17. doi: 10.1093/jrr/rrv068 Google Scholar
  47. United States (US) Government (2013) Fiscal year 2014 report to congress on federal climate change expenditures. Washington D.C.: US Government. Available from:
  48. UNSCEAR (2013) United Nations Scientific Committee on the Effects of Atomic Radiation. Rep 1: sources, effects, and risks of ionizing radiation. Report to the General Assembly, Scientific Annex AGoogle Scholar
  49. U.S. Global Change Research Program (USGCRP) (1989) Our Changing Planet: The FY 1990 Research Plan. Executive Summary. Washington, DC, USAGoogle Scholar
  50. Weinberg HS, Korol AB, Kirzhner VM, Avivi A, Fahima T, Nevo E, Shapiro S, Rennert G, Piatak O, Stepanova EI, Skvarskaja E (2001) Very high mutation rate in offspring of Chernobyl accident liquidators. Proc R Soc Lond B Biol Sci 268:1001–1005CrossRefGoogle Scholar
  51. Wheatley S, Sovacool B, Sornette D (2015) Of disasters and dragon dings: a statistical analysis of nuclear power incidents and accidents. arXiv preprint arXiv:1504.02380
  52. Wildbird Society of Japan (2013) Yachō, 777: August, 2013. ISSN 0910-4488, pp 40–34Google Scholar
  53. Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, Bakhanova EV, Junk AK, Kyrychenko OY, Musijachenko NV, Shylo SA, Vitte OP, Xu S, Xue X, Shore RE (2007) Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167:233–243CrossRefPubMedGoogle Scholar
  54. Yablokov AV, Nesterenko VB, Nesterenko AV (2009) Chernobyl: consequences of the catastrophe for people and the environment. Ann NY Acad Sci 1181: 327Google Scholar
  55. Yamashiro H, Abe Y, Fukuda T, Kino Y, Kawaguchi I, Kuwahara Y, Fukumoto M, Takahashi S, Suzuki M, Kobayashi J, Uematsu E, Tong B, Yamada T, Yoshida S, Sato E, Shinoda H, Sekine T, Isogai E, Fukumoto M (2013) Effects of radioactive caesium on bull testes after the Fukushima nuclear plant accident. Sci Rep 3:2850. doi: 10.1038/srep02850 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zakharov V, Krysanov E (1996) Consequences of the Chernobyl catastrophe: environmental health. Center for Russian Environmental Policy. Moscow, 160pGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Biological Sciences, and the Environment and Sustainability ProgramUniversity of South CarolinaColumbiaUSA
  2. 2.Laboratoire d’Ecologie, Systématique et Evolution, CNRS UMR 8079Université Paris-SudOrsay CedexFrance

Personalised recommendations