Advertisement

Mathematical Analysis of Regulatory Networks and Damage Repair Efficiency in Bacterial Cells

  • Aleksandr BugayEmail author
  • Maria Vasilyeva
  • Aleksandr Parkhomenko
  • Evgeny Krasavin
Chapter

Abstract

An extended mathematical model of the UV-induced mutation process in E. coli bacterial cells has been developed. It describes the whole sequence of molecular events involved in nucleotide excision repair of initial damage, replication kinetics and postreplication repair. The model provides ab initio calculation of the number of mismatches as a result of translesion synthesis for both wild type and repair-deficient mutant cells. A comparison of efficiency of different repair systems has been carried out.

Keywords

UV mutagenesis Replication Nucleotide excision repair Recombination repair SOS response Translesion synthesis Escherichia coli 

References

  1. Aksenov SV (1999) Dynamics of the inducing signal for the SOS regulatory system in Escherichia coli after ultraviolet irradiation. Math Biosci 157:269–286CrossRefPubMedGoogle Scholar
  2. Bates H, Randall SK, Rayssiguier C, Bridges BA, Goodman MF, Radman M (1989) Spontaneous and UV-Induced mutations in Escherichia coli K-12 strains with altered or absent DNA polymerase I. J Bacteriol 171:2480–2484Google Scholar
  3. Belov OV, Krasavin EA, Parkhomenko AYu (2009) Model of SOS-induced mutagenesis in bacteria Escherichia coli under ultraviolet irradiation. J Theor Biol 261:388–395CrossRefPubMedGoogle Scholar
  4. Bugay AN, Krasavin EA, Parkhomenko AYu, Vasilyeva MA (2015) Modeling nucleotide excision repair and its impact on UV-induced mutagenesis during SOS-response in bacterial cells. J Theor Biol 364:7–20CrossRefPubMedGoogle Scholar
  5. Cadet J, Anselmino C, Douki T, Voituriez L (1992) Photochemistry of nucleic acids in cells. J Photochem Photobiol B 15:277–298CrossRefPubMedGoogle Scholar
  6. Friedman N, Vardi S, Ronen M, Alon U, Stavans J (2005) Precise temporal modulation in the response the SOS DNA repair network in individual bacteria. PLoS Biol 3:238CrossRefGoogle Scholar
  7. Gauthier MG, Herrick J, Bechhoefer J (2010) Defects and DNA replication. Phys Rev Lett 104:218104CrossRefPubMedGoogle Scholar
  8. Jiang Q, Karata K, Woodgate R, Cox MM, Goodman MF (2009) The active form of DNA polymerase V is UmuD’2C RecA* ATP. Nature 460:359–363CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kato T, Rothman RH, Clark AJ (1974) Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV Irradiation. Genetics 87:1–18Google Scholar
  10. Krishna S, Maslov S, Sneppen K (2007) UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model. PLoS Comput Biol 3(3):0451–0462CrossRefGoogle Scholar
  11. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol Mol Biol Rev 63:751–813PubMedPubMedCentralGoogle Scholar
  12. Lin CG, Kovalsky O, Grossman L (1997) DNA damage-dependent recruitment of nucleotide excision repair and transcription proteins to Escherichia coli inner membranes. Nucleic Acids Res 25(15):3151–3158CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ni M, Wang SY, Li JK, Ouyang Q (2007) Simulating the temporal modulation of inducible DNA damage response in Escherichia coli. Biophys J 93:62–73CrossRefPubMedPubMedCentralGoogle Scholar
  14. Radman M (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In: Hanawalt P, Setlow R (eds) Molecular mechanisms for repair of DNA, Part A. Plenum Press, pp 355–367Google Scholar
  15. Rupert CS (1975) Enzymatic photoreactivation: overview. In: Hanawalt P, Setlow R (eds) Molecular mechanisms for repair of DNA, Part A. Plenum Press, pp 7387Google Scholar
  16. Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304CrossRefPubMedGoogle Scholar
  17. Tang M, Ross M (1985) Single-strand breakage of DNA in UV-Irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli. J Bacteriol 161:933–938PubMedPubMedCentralGoogle Scholar
  18. Tang M, Shen X, Frank EG, O’Donnell M, Woodgate R, Goodman MF (1999) UmuD’2C is an error-prone DNA polymerase, Escherichia coli Pol V. Proc Natl Acad Sci 96:8919–8924CrossRefPubMedPubMedCentralGoogle Scholar
  19. Van Houten B (1990) Nucleotide excision repair in Escherichia coli. Microbiol Rev 54:18–51PubMedPubMedCentralGoogle Scholar
  20. Wang Z (2001) Translesion synthesis by the UmuC family of DNA polymerase. Mutat Res 486:59CrossRefPubMedGoogle Scholar
  21. Weigle JJ (1953) Induction of mutation in bacterial virus. Proc Natl Acad Sci 39:628–636CrossRefPubMedPubMedCentralGoogle Scholar
  22. Witkin EM (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Aleksandr Bugay
    • 1
    Email author
  • Maria Vasilyeva
    • 1
  • Aleksandr Parkhomenko
    • 1
  • Evgeny Krasavin
    • 1
  1. 1.Laboratory of Radiation BiologyJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations