Advertisement

The Evolution of Radiobiological Thought: Past History and Future Predictions

  • Carmel MothersillEmail author
  • Colin Seymour
Chapter

Abstract

This retrospective and prospective paper aims to trace the evolution of the major ideas in radiobiology from the earliest speculations about how the new rays worked through the discovery of radiation linked mutations and the realization that DNA could be a target, to the understanding of the relevance of indirect effects, non-targeted effects and the role of epigenetics. In the future we predict that population based effects will dominate at all hierarchical levels and that the micro- and macro environmental influences will dominate our approach to medical and environmental protection issues.

Keywords

History of radiobiology Inductive reasoning Non-targeted effects Reductionism System biology 

Notes

Acknowledgments

We acknowledge continued support from the Canada Research Council Canada Research Chairs Programme, The Canadian Natural Sciences and Engineering Research Council (NSERC) and the National CFIDS Foundation Inc (Chronic Fatigue and Immune Deficiency Syndrome).

References

  1. Aleksakhin RM, Udalova AA, Geras’kin SA (2014) V.I. Vernadskiĭ’s theory of the biosphere and modern problems of radioecology. Radiat Biol Radioecol 54(4):432–439Google Scholar
  2. Alper T, Cramp WA (1989) The role of repair in radiobiology. Experientia 45(1):21–33CrossRefPubMedGoogle Scholar
  3. Alper T, Mothersill C, Seymour CB (1988) Lethal mutations attributable to misrepair of Q-lesions. Int J Radiat Biol 54(4):525–530CrossRefPubMedGoogle Scholar
  4. Audette-Stuart M, Kim SB, McMullin D et al (2011) Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment. J Environ Radioact 102(6):566–573CrossRefPubMedGoogle Scholar
  5. Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balzano Q, Sheppard A (2003) RF nonlinear interactions in living cells-I: nonequilibrium thermodynamic theory. Bioelectromagnetics 24(7):473–482CrossRefPubMedGoogle Scholar
  7. Berk LB (2004) Reductionism and the failure of radiobiology. JACR 1(5):304–307PubMedGoogle Scholar
  8. BEIRVII (2006) Health Risks from Exposure to Low Levels of Ionizing Radiation Phase 2 report of Natl Acad Press. Available at http://www.nap.edu/read/11340/chapter/1
  9. Blyth BJ, Sykes PJ (2011) Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 176(2):139–157CrossRefPubMedGoogle Scholar
  10. Bradshaw C, Kapustka L, Barnthouse L et al (2014) Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints. J Environ Radioact 136:98–104CrossRefPubMedGoogle Scholar
  11. Bréchignac F, Paquet F (2013) Radiation-induced risks at low dose: moving beyond controversy towards a new vision. Radiat Environ Biophys 52(3):299–301CrossRefPubMedGoogle Scholar
  12. Calabrese EJ, Dhawan G (2013) The historical use of radiotherapy in the treatment of sinus infections. Dose-Response Publ Int Hormesis Soc 11:469–479Google Scholar
  13. Calabrese EJ, Dhawan G, Kapoor R (2014) Use of X-rays to treat shoulder tendonitis/bursitis: a historical assessment. Arch Toxicol 88(8):1503–1517CrossRefPubMedGoogle Scholar
  14. Calabrese EJ, Dhawan G, Kapoor R (2015) The use of X rays in the treatment of bronchial asthma: a historical assessment. Radiat Res 184(2):180–192CrossRefPubMedGoogle Scholar
  15. Calabrese EJ (2015) On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environ Res 142:432–442CrossRefPubMedGoogle Scholar
  16. Chadwick KH, Leenhouts HP (1973) A molecular theory of cell survival. Phys Med Biol 18(1):78–87CrossRefPubMedGoogle Scholar
  17. Chang WP, Little JB (1991) Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol 60(3):483–496CrossRefPubMedGoogle Scholar
  18. Dahm R (2007) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122(6):565–581CrossRefPubMedGoogle Scholar
  19. Dale RG, Jones B (2007) Radiobiological modelling in radiation oncology. British Institute of Radiology Publications, LondonCrossRefGoogle Scholar
  20. Elkind MM, Whitmore GF (1967) The radiobiology of cultured mammalian cells. Gordon and Breach, New YorkGoogle Scholar
  21. Elkind MM, Utsumi H, Ben-Hur E (1987) Are single or multiple mechanisms involved in radiation-induced mammalian cell killing? Br J Cancer Suppl 8:24–31PubMedPubMedCentralGoogle Scholar
  22. Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  23. Halliday GM, Damian DL, Rana S, Byrne SN (2012) The suppressive effects of ultraviolet radiation on immunity in the skin and internal organs: implications for autoimmunity. J Dermatol Sci 66(3):176–182CrossRefPubMedGoogle Scholar
  24. Hatzi VI, Laskaratou DA, Mavragani IV et al (2015) Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 356(1):34–42CrossRefPubMedGoogle Scholar
  25. Hei TK, Zhou H, Chai Y et al (2011) Radiation induced non-targeted response: mechanism and potential clinical implications. Curr Mol Pharmacol 4(2):96–105CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kadhim MA, Macdonald DA, Goodhead DT et al (1992) Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355(6362):738–740CrossRefPubMedGoogle Scholar
  27. Katz R, Sharma SC, Homayoonfar M (1972) The structure of particle tracks, vol 1. In: Topics in radiation dosimetry: radiation dosimetry, p 568. ElsevierGoogle Scholar
  28. Kellerer A, Rossi H (1974) The theory of dual radiation action. Curr Top Radiat Res 8:85–158Google Scholar
  29. Konradov AA (1994) Statistical approaches to the analysis of multivariate heterogeneous biological systems. Radiat Biol Radioecol 34(6):877–886Google Scholar
  30. Kudriashov IB, Kudryashov YB, Lomanov MF (2008) Radiat Biophys (Ionizing Radiations). Nova PublicationGoogle Scholar
  31. Kusunoki Y, Hayashi T (2008) Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int J Radiat Biol 84(1):1–14CrossRefPubMedGoogle Scholar
  32. Lea DE (1946) The inactivation of viruses by radiations. Br J Radiol 19:205–212CrossRefPubMedGoogle Scholar
  33. Lea D (1962) Actions of radiations on living cells, 2d edn. Cambridge University Press, CambridgeGoogle Scholar
  34. Levene PA (1919) The structure of yeast nucleic acid. IV. Ammonia hydrolysis. J Biol Chem 40(2):415–424Google Scholar
  35. Liu Y, Kobayashi A, Fu Q et al (2015) Rescue of targeted nonstem-like cells from bystander stem-like cells in human fibrosarcoma HT1080. Radiat Res 184(3):334–340CrossRefPubMedGoogle Scholar
  36. Mannino M, Chalmers AJ (2011) Radioresistance of glioma stem cells: intrinsic characteristic or property of the “microenvironment-stem cell unit”? Mol Oncol 5(4):374–386CrossRefPubMedGoogle Scholar
  37. Mitchel REJ (2015) Adaption by low dose radiation exposure: a look at scope and limitations for radioprotection. Dose-Response: A Pub Int Hormesis Soc 13(1)Google Scholar
  38. Mothersill C, Seymour C (2010) Eco-systems biology–from the gene to the stream. Mutat Res 687(1–2):63–66CrossRefPubMedGoogle Scholar
  39. Mothersill C, Seymour C (2012) Changing paradigms in radiobiology. Mutat Res/Rev Mutat Res 750(2):85–95CrossRefGoogle Scholar
  40. Mothersill C, Seymour C (2013) Uncomfortable issues in radiation protection posed by low-dose radiobiology. Radiat Environ Biophys 52(3):293–298CrossRefPubMedGoogle Scholar
  41. Muller HJ (1927) Artificial transmutation of the gene. Science (N.Y.) 66(1699):84–87Google Scholar
  42. Nieder C, Milas L, Ang KK (2000) Tissue tolerance to reirradiation. Semin Radiat Oncol 10(3):200–209CrossRefPubMedGoogle Scholar
  43. Nomiya T (2013) Discussions on target theory: past and present. J Radiat Res 54(6):1161–1163CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pajonk F, Vlashi E (2013) Characterization of the stem cell niche and its importance in radiobiological response. Semin Radiat Oncol 23(4):237–241CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pateras IS, Havaki S, Nikitopoulou X et al (2015) The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. J Pharmacol Exp Ther 154:36–56CrossRefGoogle Scholar
  46. Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103(5):653–666CrossRefPubMedPubMedCentralGoogle Scholar
  47. Richardson RB (2011) Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults. Int J Radiat Biol 87(4):343–359CrossRefPubMedPubMedCentralGoogle Scholar
  48. Salomaa SI, Wright EG, Hildebrandt G et al (2010) Editorial. Non-DNA targeted effects. Mutat Res 687(1–2):1–2CrossRefPubMedGoogle Scholar
  49. Seymour CB, Mothersill C, Alper T (1986) High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med 50(1):167–179CrossRefPubMedGoogle Scholar
  50. Sheppard AR, Swicord ML, Balzano Q (2008) Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes. Health Phys 95(4):365–396CrossRefPubMedGoogle Scholar
  51. Steel G (1997) Basic clinical radiobiology. CRC Press, Boca Raton, FLGoogle Scholar
  52. Tapio S (2013) Ionizing radiation effects on cells, organelles and tissues on proteome level. Adv Exp Med Biol 990:37–48CrossRefPubMedGoogle Scholar
  53. Timoféeff-Ressovskii NW, Zimmer KG, Delbrück M (1935) Über die Natur der Genmutation und der Genstruktur. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. Fachgruppe VI, Biologie S(l):189–245Google Scholar
  54. Timofeev-Resovskii NV, Ginter EK, Glotov NV, Ivanov VI (1971) Genetic and somatic effects of x-rays and fast neutrons in experiments on Arabidopsis and Drosophila. Soviet Genetics 7(4):446–453PubMedGoogle Scholar
  55. Ulsh BA, Miller SM, Mallory FF et al (2004) Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation. J Environ Radioact 74(1–3):73–81CrossRefPubMedGoogle Scholar
  56. UNSCEAR 2010 Report: “Summary of low-dose radiation effects on health”. Available at: http://www.unscear.org/unscear/publications.html
  57. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738CrossRefPubMedGoogle Scholar
  58. Wright EG (2000) Inducible genomic instability: new insights into the biological effects of ionizing radiation. Med Confl Surviv 16(1):117–130 (discussion: 131–133)Google Scholar
  59. Yi S-Y, Hao Y-B, Nan K-J, Fan T-L (2013) Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev 39(3):290–296CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Medical Physics and Applied Radiation SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations