Skip to main content

The Evolution of Radiobiological Thought: Past History and Future Predictions

  • Chapter
  • First Online:
Genetics, Evolution and Radiation

Abstract

This retrospective and prospective paper aims to trace the evolution of the major ideas in radiobiology from the earliest speculations about how the new rays worked through the discovery of radiation linked mutations and the realization that DNA could be a target, to the understanding of the relevance of indirect effects, non-targeted effects and the role of epigenetics. In the future we predict that population based effects will dominate at all hierarchical levels and that the micro- and macro environmental influences will dominate our approach to medical and environmental protection issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Marie Skłodowska-Curie and Pierre Curie.

References

  • Aleksakhin RM, Udalova AA, Geras’kin SA (2014) V.I. Vernadskiĭ’s theory of the biosphere and modern problems of radioecology. Radiat Biol Radioecol 54(4):432–439

    Google Scholar 

  • Alper T, Cramp WA (1989) The role of repair in radiobiology. Experientia 45(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Alper T, Mothersill C, Seymour CB (1988) Lethal mutations attributable to misrepair of Q-lesions. Int J Radiat Biol 54(4):525–530

    Article  CAS  PubMed  Google Scholar 

  • Audette-Stuart M, Kim SB, McMullin D et al (2011) Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment. J Environ Radioact 102(6):566–573

    Article  CAS  PubMed  Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzano Q, Sheppard A (2003) RF nonlinear interactions in living cells-I: nonequilibrium thermodynamic theory. Bioelectromagnetics 24(7):473–482

    Article  PubMed  Google Scholar 

  • Berk LB (2004) Reductionism and the failure of radiobiology. JACR 1(5):304–307

    PubMed  Google Scholar 

  • BEIRVII (2006) Health Risks from Exposure to Low Levels of Ionizing Radiation Phase 2 report of Natl Acad Press. Available at http://www.nap.edu/read/11340/chapter/1

  • Blyth BJ, Sykes PJ (2011) Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 176(2):139–157

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw C, Kapustka L, Barnthouse L et al (2014) Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints. J Environ Radioact 136:98–104

    Article  CAS  PubMed  Google Scholar 

  • Bréchignac F, Paquet F (2013) Radiation-induced risks at low dose: moving beyond controversy towards a new vision. Radiat Environ Biophys 52(3):299–301

    Article  PubMed  Google Scholar 

  • Calabrese EJ, Dhawan G (2013) The historical use of radiotherapy in the treatment of sinus infections. Dose-Response Publ Int Hormesis Soc 11:469–479

    Google Scholar 

  • Calabrese EJ, Dhawan G, Kapoor R (2014) Use of X-rays to treat shoulder tendonitis/bursitis: a historical assessment. Arch Toxicol 88(8):1503–1517

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Dhawan G, Kapoor R (2015) The use of X rays in the treatment of bronchial asthma: a historical assessment. Radiat Res 184(2):180–192

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2015) On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environ Res 142:432–442

    Article  CAS  PubMed  Google Scholar 

  • Chadwick KH, Leenhouts HP (1973) A molecular theory of cell survival. Phys Med Biol 18(1):78–87

    Article  CAS  PubMed  Google Scholar 

  • Chang WP, Little JB (1991) Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol 60(3):483–496

    Article  CAS  PubMed  Google Scholar 

  • Dahm R (2007) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122(6):565–581

    Article  PubMed  Google Scholar 

  • Dale RG, Jones B (2007) Radiobiological modelling in radiation oncology. British Institute of Radiology Publications, London

    Book  Google Scholar 

  • Elkind MM, Whitmore GF (1967) The radiobiology of cultured mammalian cells. Gordon and Breach, New York

    Google Scholar 

  • Elkind MM, Utsumi H, Ben-Hur E (1987) Are single or multiple mechanisms involved in radiation-induced mammalian cell killing? Br J Cancer Suppl 8:24–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Halliday GM, Damian DL, Rana S, Byrne SN (2012) The suppressive effects of ultraviolet radiation on immunity in the skin and internal organs: implications for autoimmunity. J Dermatol Sci 66(3):176–182

    Article  CAS  PubMed  Google Scholar 

  • Hatzi VI, Laskaratou DA, Mavragani IV et al (2015) Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 356(1):34–42

    Article  CAS  PubMed  Google Scholar 

  • Hei TK, Zhou H, Chai Y et al (2011) Radiation induced non-targeted response: mechanism and potential clinical implications. Curr Mol Pharmacol 4(2):96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadhim MA, Macdonald DA, Goodhead DT et al (1992) Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355(6362):738–740

    Article  CAS  PubMed  Google Scholar 

  • Katz R, Sharma SC, Homayoonfar M (1972) The structure of particle tracks, vol 1. In: Topics in radiation dosimetry: radiation dosimetry, p 568. Elsevier

    Google Scholar 

  • Kellerer A, Rossi H (1974) The theory of dual radiation action. Curr Top Radiat Res 8:85–158

    Google Scholar 

  • Konradov AA (1994) Statistical approaches to the analysis of multivariate heterogeneous biological systems. Radiat Biol Radioecol 34(6):877–886

    CAS  Google Scholar 

  • Kudriashov IB, Kudryashov YB, Lomanov MF (2008) Radiat Biophys (Ionizing Radiations). Nova Publication

    Google Scholar 

  • Kusunoki Y, Hayashi T (2008) Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int J Radiat Biol 84(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Lea DE (1946) The inactivation of viruses by radiations. Br J Radiol 19:205–212

    Article  CAS  PubMed  Google Scholar 

  • Lea D (1962) Actions of radiations on living cells, 2d edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Levene PA (1919) The structure of yeast nucleic acid. IV. Ammonia hydrolysis. J Biol Chem 40(2):415–424

    CAS  Google Scholar 

  • Liu Y, Kobayashi A, Fu Q et al (2015) Rescue of targeted nonstem-like cells from bystander stem-like cells in human fibrosarcoma HT1080. Radiat Res 184(3):334–340

    Article  CAS  PubMed  Google Scholar 

  • Mannino M, Chalmers AJ (2011) Radioresistance of glioma stem cells: intrinsic characteristic or property of the “microenvironment-stem cell unit”? Mol Oncol 5(4):374–386

    Article  CAS  PubMed  Google Scholar 

  • Mitchel REJ (2015) Adaption by low dose radiation exposure: a look at scope and limitations for radioprotection. Dose-Response: A Pub Int Hormesis Soc 13(1)

    Google Scholar 

  • Mothersill C, Seymour C (2010) Eco-systems biology–from the gene to the stream. Mutat Res 687(1–2):63–66

    Article  CAS  PubMed  Google Scholar 

  • Mothersill C, Seymour C (2012) Changing paradigms in radiobiology. Mutat Res/Rev Mutat Res 750(2):85–95

    Article  CAS  Google Scholar 

  • Mothersill C, Seymour C (2013) Uncomfortable issues in radiation protection posed by low-dose radiobiology. Radiat Environ Biophys 52(3):293–298

    Article  PubMed  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science (N.Y.) 66(1699):84–87

    Google Scholar 

  • Nieder C, Milas L, Ang KK (2000) Tissue tolerance to reirradiation. Semin Radiat Oncol 10(3):200–209

    Article  CAS  PubMed  Google Scholar 

  • Nomiya T (2013) Discussions on target theory: past and present. J Radiat Res 54(6):1161–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Pajonk F, Vlashi E (2013) Characterization of the stem cell niche and its importance in radiobiological response. Semin Radiat Oncol 23(4):237–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Pateras IS, Havaki S, Nikitopoulou X et al (2015) The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. J Pharmacol Exp Ther 154:36–56

    Article  CAS  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103(5):653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson RB (2011) Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults. Int J Radiat Biol 87(4):343–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomaa SI, Wright EG, Hildebrandt G et al (2010) Editorial. Non-DNA targeted effects. Mutat Res 687(1–2):1–2

    Article  CAS  PubMed  Google Scholar 

  • Seymour CB, Mothersill C, Alper T (1986) High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med 50(1):167–179

    Article  CAS  PubMed  Google Scholar 

  • Sheppard AR, Swicord ML, Balzano Q (2008) Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes. Health Phys 95(4):365–396

    Article  CAS  PubMed  Google Scholar 

  • Steel G (1997) Basic clinical radiobiology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Tapio S (2013) Ionizing radiation effects on cells, organelles and tissues on proteome level. Adv Exp Med Biol 990:37–48

    Article  CAS  PubMed  Google Scholar 

  • Timoféeff-Ressovskii NW, Zimmer KG, Delbrück M (1935) Über die Natur der Genmutation und der Genstruktur. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. Fachgruppe VI, Biologie S(l):189–245

    Google Scholar 

  • Timofeev-Resovskii NV, Ginter EK, Glotov NV, Ivanov VI (1971) Genetic and somatic effects of x-rays and fast neutrons in experiments on Arabidopsis and Drosophila. Soviet Genetics 7(4):446–453

    CAS  PubMed  Google Scholar 

  • Ulsh BA, Miller SM, Mallory FF et al (2004) Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation. J Environ Radioact 74(1–3):73–81

    Article  CAS  PubMed  Google Scholar 

  • UNSCEAR 2010 Report: “Summary of low-dose radiation effects on health”. Available at: http://www.unscear.org/unscear/publications.html

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  • Wright EG (2000) Inducible genomic instability: new insights into the biological effects of ionizing radiation. Med Confl Surviv 16(1):117–130 (discussion: 131–133)

    Google Scholar 

  • Yi S-Y, Hao Y-B, Nan K-J, Fan T-L (2013) Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev 39(3):290–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge continued support from the Canada Research Council Canada Research Chairs Programme, The Canadian Natural Sciences and Engineering Research Council (NSERC) and the National CFIDS Foundation Inc (Chronic Fatigue and Immune Deficiency Syndrome).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmel Mothersill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Mothersill, C., Seymour, C. (2016). The Evolution of Radiobiological Thought: Past History and Future Predictions. In: Korogodina, V., Mothersill, C., Inge-Vechtomov, S., Seymour, C. (eds) Genetics, Evolution and Radiation. Springer, Cham. https://doi.org/10.1007/978-3-319-48838-7_12

Download citation

Publish with us

Policies and ethics