Skip to main content

Organization and Evolution of the Duplicated Flavonoid Biosynthesis Genes in Triticeae

  • Chapter
  • First Online:
Genetics, Evolution and Radiation
  • 884 Accesses

Abstract

Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes) or segmental chromosome duplications (paralogous genes). The flavonoid biosynthesis (FB) gene network is known to be a convenient model system for investigation of different issues of plant genetics. In the current study, homoeologous and/or paralogous copies were isolated for a number of FB regulatory and structural genes in polyploid wheat. Duplicated copies of the regulatory Myc gene demonstrated essential structural divergence and tissue-specific transcriptional activity. Among structural genes both similar or divergent homoeological sets were found. Chi homoeologs encode identical enzymes, but have distinct sets of cis-regulatory elements and demonstrate different patterns of expression. Unlike Chi, the F3h homoeologs are similar in both coding and promoter regions. However, there is a highly divergent paralog , F3h-2, in the B, G, S and R genomes of Triticeae species, which has been suggested to acquire a new functional specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    Article  CAS  PubMed  Google Scholar 

  • Bottley A, Xia GM, Koebner RM (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell 12:1551–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaya OB, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Article  CAS  Google Scholar 

  • Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765

    PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khlestkina EK, Röder MS, Salina EA (2008) Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat. BMC Plant Biol 8:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Khlestkina EK, Röder MS, Börner A (2010) Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69

    Article  CAS  Google Scholar 

  • Khlestkina EK, Dobrovolskaya OB, Leonova IN, Salina EA (2013) Diversification of the duplicated F3h genes in Triticeae. J Mol Evol 76:261–266

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Shoeva OY, Gordeeva EI (2015) Flavonoid biosynthesis genes in wheat. Rus J Genet Appl Res 5:268–278

    Article  CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hort (Tokyo) 19:13–14

    Google Scholar 

  • Kihara H (1954) Origin of wheat. Wheat Inf Serv 1:35–42

    Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495

    Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoeva OY, Khlestkina EK (2013) F3h gene expression in various organs of wheat. Mol Biol 47:901–903

    Article  CAS  Google Scholar 

  • Shoeva OY, Gordeeva EI, Khlestkina EK (2014a) The regulation of anthocyanin synthesis in the wheat pericarp. Molecules 19:20266–20279

    Article  PubMed  Google Scholar 

  • Shoeva OY, Khlestkina EK, Berges H, Salina EA (2014b) The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. Gene 538:334–341

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploidization and the mistery of diploidization. Nat Rev Genet 2:233–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Khlestkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Khlestkina, E., Shoeva, O. (2016). Organization and Evolution of the Duplicated Flavonoid Biosynthesis Genes in Triticeae. In: Korogodina, V., Mothersill, C., Inge-Vechtomov, S., Seymour, C. (eds) Genetics, Evolution and Radiation. Springer, Cham. https://doi.org/10.1007/978-3-319-48838-7_10

Download citation

Publish with us

Policies and ethics