Longer Term Sequelae of Prematurity: The Adolescent and Young Adult

  • Andrew BushEmail author
  • Charlotte E. Bolton
Part of the Respiratory Medicine book series (RM)


Preterm delivery is becoming increasingly common, and with changes in neonatal intensive care, even small and more immature babies are surviving into adult life. These treatment changes are reflected also in the different patterns of disease in survivors, previously largely affecting the airway, but currently more leading to alveolar hypoplasia. Furthermore, long-term consequences are not restricted to very preterm babies, but are seen even in those born at 37–38 weeks gestation, requiring no neonatal intervention at all. Sequelae in adults include increased morbidity and even mortality, airflow obstruction, alveolar hypoplasia, focal structural changes, and impairment of exercise performance. The airway disease is characterized by fixed and variable airflow obstruction, but without evidence of type 2 inflammation, despite which prescription of inhaled corticosteroids is common. Despite the number and frequency of physiological deficits, most survivors who do not have comorbidities are living unrestricted lives. However, many survivors with neurodevelopmental and other handicaps often fail to obtain the holistic care they need. The very long-term consequences of prematurity, specifically whether they will develop premature airflow obstruction, are largely speculative, nor is it known if the pathophysiology of late airways disease will be the same as that in heavy smokers.


Bronchopulmonary dysplasia Airflow obstruction Alveolar hypoplasia Exercise Control of breathing Airway inflammation Bronchial hyperresponsiveness 


  1. 1.
    Office for National Statistics. Preterm births, preterm births data, press release based on 2005 data.2005.Available from:
  2. 2.
    Islam JY, Keller RJ, Aschner JL, Hartert TV, Moore PE. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192:134–56.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Poindexter BB, Feng R, Schmidt B, Aschner JL, Ballard RA, Hamvas A, Reynolds AM, Shaw PA, Jobe AH. Prematurity and Respiratory Outcomes Program. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the prematurity and respiratory outcomes program. Ann Am Thorac Soc. 2015;12:1822–30.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med. 2013;1:728–42.PubMedCrossRefGoogle Scholar
  5. 5.
    McGrath-Morrow SA, Ryan T, Rickert K, Lefton-Greif MA, Eakin M, Collaco JM. The impact of bronchopulmonary dysplasiaon caregiver health-related quality of life during the first 2 years of life. Pediatr Pulmonol. 2013;48:579–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Crump C. Medical history taking in adults should include questions about preterm birth. Br Med J. 2014;349:g4860.CrossRefGoogle Scholar
  7. 7.
    Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L, Stocks J, Walshaw MJ. Are early life factors considered when managing respiratory disease?A British Thoracic Society survey of current practice. Thorax. 2012;67:1110.PubMedCrossRefGoogle Scholar
  8. 8.
    van Nimwegen FA, Penders J, Stobberingh EE, Postma DS, Koppelman GH, Kerkhof M, Reijmerink NE, Dompeling E, van den Brandt PA, Ferreira I, Mommers M, Thijs C. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011;128:948–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Stick SM, Burton PR, Gurrin L, Sly PD, LeSouëf PN. Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet. 1996;348:1060–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Rusconi F, Galassi C, Forastiere F, Bellasio M, De Sario M, Ciccone G, Brunetti L, Chellini E, Corbo G, La Grutta S, Lombardi E, Piffer S, Talassi F, Biggeri A, Pearce N. Maternal complications and procedures in pregnancy and at birth and wheezing phenotypes in children. Am J Respir Crit Care Med. 2007;175:16–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Shaheen SO, Sterne JAS, Tucker JS, Florey CD. Birth weight, childhood lower respiratory tract infection, and adult lung function. Thorax. 1998;53:549–53.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Svanes C, Sunyer J, Plana E, Dharmage S, Heinrich J, Jarvis D, de Marco R, Norbäck D, Raherison C, Villani S, Wjst M, Svanes K, Antó JM. Early life origins ofchronic obstructive pulmonary disease. Thorax. 2010;65:14–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Li J, Yu KH, Oehlert J, Jeliffe-Pawlowski LL, Gould JB, Stevenson DK, Snyder M, Shaw GM, O'Brodovich HM. Exome sequencing of neonatal blood spots and the identification of genes implicated in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192:589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cookson H, Granell R, Joinson C, Ben-Shlomo Y, Henderson JA. Mothers’ anxiety during pregnancy is associated with asthma in their children. J Allergy Clin Immunol. 2009;123:847–53.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wright RJ. Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am. 2011;31:19–39.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mathilda Chiu YH, Coull BA, Cohen S, Wooley A, Wright RJ. Prenatal and postnatal maternal stress and wheeze in urban children: effect of maternal sensitization. Am J Respir Crit Care Med. 2012;186:147–54.PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Stoll BJ, Hansen NI, Walsh MC, Carlo WA, Shankaran S, Lapook AR, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in care practices, morbidity and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Diaz-Rosello JL, Gisore P, Niermeyer S, Paul VK, Quiroga A, Saugstad OL, Silvestre MA, Singhal N, Sugiura T, Uxa F. Guidelines on basic newborn resuscitation 2012. Geneva: World Health Organization; 2012.Google Scholar
  19. 19.
    Gough A, Spence D, Linden M, Hallikday HL, McGarvey LPA. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia. Chest. 2012;141:1554–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Mazloum DEI, Moschino L, Bozzetto S, Baraldi E. Chronic lung disease of prematurity: long-term respiratory outcomes. Neonatology. 2014;105:352–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;39:105–11.CrossRefGoogle Scholar
  22. 22.
    Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L. Lung consequences in adults born prematurely. Thorax. 2015;70:574–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67:54–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Harju M, Keski-Nisula L, Georgiadis L, Raisanen S, Gissler M, Heinionen S. The burden of childhood asthma and late preterm and early term births. J Pediatr. 2014;164:295–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Vogt H, Lindstrom K, Brabak L, Hjern A. Preterm birth and inhaled corticosteroid use in 6-70 19-year-olds: a Swedish national cohort study. Pediatrics. 2011;127:1052–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Damgaard AL, Hansen BM, Mathiasen R, Buchvald F, Lange T, Greisen G. PLoS One. 2015;10:e0117253.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Langhoff-Roos J, Kesmodel U, Jacobsson B, Rasmussen S, Vogel I. Spontaneous preterm delivery in primiparous women at low risk in Denmark: population based study. Br Med J. 2006;332:937–9.CrossRefGoogle Scholar
  28. 28.
    Cox B, Martens E, Nemery B, Vangronsveld J, Nawrot TS. Impact of a stepwise introduction of smoke-free legislation on the rate of preterm births: analysis of routinely collectedbirthdata. BMJ. 2013;346:f441.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, Kotecha S. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68:760–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Pike KC, Lucas JS. Respiratory consequences oflate preterm birth. Paediatr Respir Rev. 2015;16:182–8.PubMedGoogle Scholar
  31. 31.
    Gough A, Linden M, Spence D, Patterson CC, Halliday HL, McGarvey LPA. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur Respir J. 2014;43:808–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Beaudoin S, Tremblay GM, Croitoru D, Benedetti A, Landry JS. Healthcare utilization and health-related quality of life of adult survivors of preterm birth complicated by bronchopulmonary dysplasia. Acta Paediatr. 2013;102:607–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Landry JS, Tremblay GM, Li PZ, Wong C, Benedetti A, Taivassalo T. Lung function and bronchial hyperresponsiveness in adults born prematurely: acohort study. Ann Am Thorac Soc2015. [Epub ahead of print]Google Scholar
  34. 34.
    Crump C, Winkleby MA, Sundquist J, et al. Risk of asthma in young adults who were born preterm: a Swedish national cohort study. Pediatrics. 2011;127:e913–20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Doyle LW, Faber B, Callanan C, et al. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006;118:108–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Narang I, Rosenthal M, Cremonesini D, Silverman M, Bush A. Longitudinal evaluation of airway function 21 years after preterm birth. Am J Respir Crit Care Med. 2008;178:74–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Walter EC, Ehlenbach WJ, Hotchkin DL, Chien JW, Koepsell TD. Low birth weight and respiratory disease in adulthood: a population-based case-control study. Am J Respir Crit Care Med. 2009;180:176–80.Google Scholar
  38. 38.
    Crump C, Sundquist K, Sundquist J, Winkleby MA. Gestational age at birth and mortality in young adulthood. JAMA. 2011;306:1233–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, Humbert M, Jones P, Gibson PG, Vestbo J, Beasley R, Pavord ID. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J. 2016;47(2):410–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Roth-Kleiner M, Post M. Similarities and dissimilarities of branching and septation during lungdevelopment. Pediatr Pulmonol. 2005;40:113–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Kho AT, Bhattacharya S, Tantisira KG, Carey VJ, Gaedigk R, Leeder JS, Kohane IS, Weiss ST, Mariani TJ. Transcriptomic analysis of humanlung development. Am J Respir Crit Care Med. 2010;181:54–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Bruce H, et al., the ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40:1324–43.Google Scholar
  43. 43.
    Morgan WJ, Stern DA, Sherrill DL, Guerra S, Holberg CJ, Guilbert TW, Taussig LM, Wright AL, Martinez FD. Outcome of asthma and wheezing in the first 6 years of life: follow-up through adolescence. Am J Respir Crit Care Med. 2005;172:1253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sears MR, Greene JM, Willan AR, Wiecek EM, Taylor DR, Flannery EM, Cowan JO, Herbison GP, Silva PA, Poulton R. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 2003;349:1414–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69:805–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68:767–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Bolton CE, Bush A. Coming now to a chest clinic near you. Thorax. 2013;68:707–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Brundage KL, Mohsini KG, Froese AB, Fisher JT. Bronchodilatorresponse to ipratropium bromide in infants with bronchopulmonary dysplasia. Am Rev Respir Dis. 1990;142:1137–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, Thomas S, Stocks J. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182:237–45. Gough A, Linden M, Spence D et al. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur Respir J.2014;43:808–16.Google Scholar
  50. 50.
    Tiddens HA, Hofhuis W, Casotti V, Hop WC, Hulsmann AR, de Jongste JC. Airway dimensions in bronchopulmonary dysplasia: implications for airflow obstruction. Pediatr Pulmonol. 2008;43:1206–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Baraldi E, Bonetto G, Zachello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171:68–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Carraro S, Piacentini G, Lusiani M, Uyan ZS, Filippone M, Schiavon M, Boner AL, Baraldi E. Exhaled air temperature in bronchopulmonary dysplasia. Pediatrics. 2010;45:1240–5.Google Scholar
  53. 53.
    Chan N, Silverman M. Increased airway responsiveness in children of low birth weight at school age: effect of topical corticosteroids. Arch Dis Child. 1993;69:120–4.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Filippone M, Bonetto G, Corradi M, Frigo AC, Baraldi E. Evidence of unexpected oxidative stress in airways of adolescents born very preterm. Eur Respir J. 2012;40:1253–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Carraro S, Giordano G, Pirillo P, Maretti M, Reniero F, Cogo PE, Perilongo G, Stocchero M, Baraldi E. Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach. J Pediatr. 2015;166:234–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Lawlor DA, Ebrahim S, Davey SG. Association of birth weight with adult lung function: findings from the British Women’s Heart and Health Study and a meta-analysis. Thorax. 2005;60:851–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hancox RJ, Poulton R, Greene JM, McLachlan CR, Pearce MS, Sears MR. Associations between birth weight, early childhood weight gain and adult lung function. Thorax. 2009;64:228–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Lucas JS, Inskip HM, Godfrey KM, Foreman CT, Warner JO, Gregson RK, Clough JB. Small size at birth and greater postnatal weight gain: relationships to diminished infant lung function. Am J Respir Crit Care Med. 2004;170:534–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Turner S, Zhang G, Young S, Cox M, Goldblatt J, Landau L, Le Souëf P. Associations between postnatal weight gain, change in postnatal pulmonary function, formula feeding and early asthma. Thorax. 2008;63:234–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Suresh S, O'Callaghan M, Sly PD, Mamun AA. Impact of childhood anthropometry trends on adult lung function. Chest. 2015;147:1118–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Lin MH, Hsieh CJ, Caffrey JL, et al. Fetal growth, obesity, and atopic disorders in adolescence: a retrospective birth cohort study. Paediatr Perinat Epidemiol. 2015;29:472–9.PubMedCrossRefGoogle Scholar
  62. 62.
    der Voort AM S-v, Arends LR, de Jongste JC, et al. Preterm birth, infantweight gain, and childhoodasthmarisk: ameta-analysisof 147,000 European children. J Allergy Clin Immunol. 2014;133:1317–29.CrossRefGoogle Scholar
  63. 63.
    Halvorsen T, Skadberg BT, Eide GE, Røksund OD, Carlsen KH, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr. 2004;93:1294–300.PubMedCrossRefGoogle Scholar
  64. 64.
    Saarenpaa H-K, Tikanmaki M, Sipola-Leppanen M, et al. Lung function in very low birth weight adults. Pediatrics. 2015;136:642–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Cai Y, Shaheen SO, Hardy R, Kuh D, Hansell AL. Birth weight, early childhood growth and lung function in middle to early old age: 1946 British birth cohort. Thorax. 2016;71:916–22.PubMedCrossRefGoogle Scholar
  66. 66.
    Brostrom EB, Akre O, Katz-Salamon M, Jaraj D, Kaijser M. Obstructive pulmonary disease in old age among individuals born preterm. Eur J Epidemiol. 2013;28:79–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Baumann S, Godtfredsen NS, Lange P, Pisinger C. The impact of birth weight on the level of lung function and lung function decline in the general adult population. The Inter99 study. Respir Med. 2015;109:1293–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Grol MH, Gerritsen J, Vonk JM, Schouten JP, Koëter GH, Rijcken B, Postma DS. Risk factors for growth and decline of lung function in asthmatic individuals up to age 42 years. A 30-year follow-up study. Am J Respir Crit Care Med. 1999;160:1830–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Grol MH, Postma DS, Vonk JM, Schouten JP, Rijcken B, Koëter GH, Gerritsen J. Risk factors from childhood to adulthood forbronchialresponsiveness at age 32-42 yr. Am J Respir Crit Care Med. 1999;160:150–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Bisgaard H, Jensen SM, Bønnelykke K. Interaction between asthma and lung function growth in early life. Am J Respir Crit Care Med. 2012;185:1183–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Barker DJP, Godfrey KM, Fall C, Osmond C, Winter PD, Shaheen SO. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive pulmonary disease. BMJ. 1991;303:671–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, Meek P, Owen CA, Petersen H, Pinto-Plata V, Schnohr P, Sood A, Soriano JB, Tesfaigzi Y, Vestbo J. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373:111–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Postma DS, Brusselle G, Bush A, Holloway JW. I have taken my umbrella, so of course it does not rain. Thorax. 2012;67:88–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Strang-Karlsson S, Raikkonen K, Pesonen A-K, et al. Very low birth weightand behavioural symptoms of attention deficit hyperactivity disorder in young adulthood: the Helsinki study of very-low-birth-weight adults. Am J Psychiatry. 2008;165:1345–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Hille ETM, Dorrepaal C, Pirenboom R, Gravenhorst JB, Brand R, Virloove-Vanhorick SP. Social lifestyle, risk-taking behaviour, and psychopathology in young adults born very preterm or with a very low birthweight. J Pediatr. 2008;152:793–800.PubMedCrossRefGoogle Scholar
  76. 76.
    Narayanan M, Beardsmore CS, Owers-Bradley J, Dogaru CM, Mada M, Ball I, Garipov RR, Kuehni CE, Spycher BD, Silverman M. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am J Respir Crit Care Med. 2013;187:1104–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Waters B, Owers-Bradley J, Silverman M. Acinar structure in symptom-free adults by Helium-3 magnetic resonance. Am J Respir Crit Care Med. 2006;173:847–51.PubMedCrossRefGoogle Scholar
  78. 78.
    Hyde DM, Blozis SA, Avdalovic MV, et al. Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol. 2007;293:L570–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Satrell E, Roksund O, Thorsen E, Halvorsen T. Pulmonary gas transfer in children and adults born extremely preterm. Eur Respir J. 2013;42:1536–44.PubMedCrossRefGoogle Scholar
  80. 80.
    Chang DV, Assaf SJ, Tiller CJ, Kisling JA, Tepper RS. Membrane and capillary components of lung diffusion in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2016;193(7):767–71.PubMedCrossRefGoogle Scholar
  81. 81.
    Narang I, Bush A, Rosenthal M. Gas transfer and pulmonary blood flow at rest and during exercise in adults, 21 years after preterm birth. Am J Respir Crit Care Med. 2009;180:339–45.PubMedCrossRefGoogle Scholar
  82. 82.
    Mitchell SH, Teague WH. Reduced gas transfer at rest and during exercise in school-age survivors of bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1998;157:1406–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Lovering AT, Laurie SS, Elliott JE, et al. Normal pulmonary gas exchange efficiency and absence of exercise-induced arterial hypoxemia in adults with bronchopulmonary dysplasia. J Appl Physiol. 2013;115:1050–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Narayanan M. PhD thesis, University of Leicester; 2014.Google Scholar
  85. 85.
    Maritz GS, Thomas RA. The influence of maternal nicotine exposure on the interalveolar septal status of neonatal rat lung. Cell Biol Int. 1994;18:747–57.PubMedCrossRefGoogle Scholar
  86. 86.
    Wilson AC. What does imaging the chest tell us about bronchopulmonary dysplasia? Paediatr Respir Rev. 2010;11:158–61.PubMedCrossRefGoogle Scholar
  87. 87.
    Oppenheim C et al. Bronchopulmonary dysplasia: value of CT in identifying pulmonary sequelae. AJR Am J Roentgenol. 1994;163:169–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Auckland SM et al. High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population based study. AJR Am J Roentgenol. 2006;187:1012–8.CrossRefGoogle Scholar
  89. 89.
    Auckland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax. 2009;64:505–10.Google Scholar
  90. 90.
    Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, Murray CP, Wilson A, Chambers DC. Emphysema in young adult survivors of moderate-to-severebronchopulmonary dysplasia. Eur Respir J. 2008;32:321–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Aquino SL, Schechter MS, Chiles C, Ablin DS, Chipps B, Webb WR. High-resolution inspiratory and expiratory CT in older children and adults with bronchopulmonary dysplasia. AJR Am J Roentgenol. 1999;173:963–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Mahut B et al. Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007;92:F459–64.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ochiai M et al. A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr. 2008;152:90–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Walkup LL, Tkach JA, Higano NS, Thomen RP, Fain SB, Merhar SL, Fleck RJ, Amin RS, Woods JC. Quantitative magnetic resonance imaging of bronchopulmonary dysplasia in the neonatal intensive care unit environment. Am J Respir Crit Care Med. 2015;192:1215–22.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Clemm HH, Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc. 2014;11:537–45.PubMedCrossRefGoogle Scholar
  96. 96.
    Clemm H, Roksund O, Thorsen E, Eide GE, Markestad I, Halvorsen T. Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics. 2012;129:e97–e105.PubMedCrossRefGoogle Scholar
  97. 97.
    O’Donnell DE. Adult survivors of preterm birth. What spirometry conceals, exercise tests reveal. Ann Am Thorac Soc. 2014;10:1606–7.CrossRefGoogle Scholar
  98. 98.
    Kjantie E, Strang-Karlsson S, Hovi P, et al. Adults born at very low birth weight exercise less than their peers born at term. J Pediatr. 2010;157:610–6.CrossRefGoogle Scholar
  99. 99.
    Lovering AT, Elliott JE, Laurie SS, et al. Ventilatory and sensory responses in adult survivors of preterm birth and bronchopulmonary dysplasia with reduced exercise capacity. Ann Am Thorac Soc. 2014;11:1528–37.PubMedCrossRefGoogle Scholar
  100. 100.
    Guenette JA, Webb KA, O’Donnell DE. Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur Respir J. 2012;40:322–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Røksund OD, Clemm H, Heimdal JH, Aukland SM, Sandvik L, Markestad T, Halvorsen T. Left vocal cord paralysis after extreme preterm birth, a new clinical scenario in adults. Pediatrics. 2010;126:e1569–77.PubMedCrossRefGoogle Scholar
  102. 102.
    Bates ML, Pillers D-AM, Palta M, Farrell ET, Eldridge MW. Ventilatory control in infants, children and adults with bronchopulmonary dysplasia. Respir Physiol Neurobiol. 2013;189:329–37.PubMedCrossRefGoogle Scholar
  103. 103.
    Rosen CL, Larkin EK, et al. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: association with race and prematurity. J Pediatr. 2003;142:383–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Sharma PB, Barody F, et al. Obstructive sleep apnea in the formerly preterm infant: an overlooked diagnosis. Front Neurol. 2011;2:73.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hibbs AM, Johnson NL, et al. Prenatal and neonatal risk factors for sleep disordered breathing in school-aged children born preterm. J Pediatr. 2008;153:176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bates ML, Farrell ET, Eldridge MW. Abnormal ventilatory responses in adults born prematurely. N Engl J Med. 2014;370:584–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Vrijlnadt EJLE, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150:256–61.CrossRefGoogle Scholar
  108. 108.
    Mourami PM, Ivy DD, Gao D, Abman SH. Pulmonary vascular effects of inhaled nitric oxide nd oxygen tension in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2004;170:1006–13.CrossRefGoogle Scholar
  109. 109.
    Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet. 1999;353:2205–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Poon CY, Watkins WJ, Evans CJ, Tsai-Goodman B, Bolton CE, Cockcroft JR, Wise RG, Kotecha S. Pulmonary arterial response to hypoxia in survivors of chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed. 2016;101(4):F309–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Harding RM, Mills FJ. Aviation medicine. 2nded ed. Plymouth: BMA Publications; 1988.Google Scholar
  112. 112.
    Poon MGS, Edwards MO, Kotecha S. Long term cardiovascular consequences of chronic lung disease of prematurity. Paediatr Respir Rev. 2013;14:242–9.PubMedGoogle Scholar
  113. 113.
    Penn AL, Rouse RL, Horohov DW, Kearney MT, Paulsen DB, Lomax L. In utero exposure to environmental tobacco smoke potentiates adult responses to allergen in BALB/c mice. Environ Health Perspect. 2007;115:548–55.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Buczynski BW, Yee M, Martin KC, Lawrence BP, O'Reilly MA. Neonatal hyperoxia alters the host response to influenza A virus infection in adult mice through multiple pathways. Am J Physiol Lung Cell Mol Physiol. 2013;305:L282–90.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bouch S, O'Reilly M, Harding R, Sozo F. Neonatalexposure to mildhyperoxiacauses persistent increases inoxidative stressand immune cells in the lungs of mice without altering lung structure. Am J Physiol Lung Cell Mol Physiol. 2015;309:L488–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.PaediatricsImperial CollegeLondonUK
  2. 2.Paediatric RespirologyNational Heart and Lung Institute, Royal Brompton Harefield NHS Foundation TrustLondonUK
  3. 3.Department of Paediatric Respiratory MedicineRoyal Brompton HospitalLondonUK
  4. 4.Respiratory MedicineUniversity of Nottingham, Clinical SciencesNottinghamUK
  5. 5.Nottingham University Hospitals Trust, Clinical SciencesNottinghamUK

Personalised recommendations