Skip to main content

Diagnostic Modalities: Pulmonary Function Testing and Imaging

  • 733 Accesses

Part of the Respiratory Medicine book series (RM)

Abstract

Premature birth is associated with adverse late pulmonary outcomes, most commonly manifested as reduced pulmonary function, recurrent wheeze, exercise limitation, and chronic cough [1–3]. The realization that insults to the developing lung may have lifelong effects, with respiratory disease burden noted later in life, has led to the need to develop sensitive methods of assessing respiratory function and structural disease during infancy as well as the preschool and school-age years.

Keywords

  • Bronchopulmonary dysplasia
  • Prematurity
  • Respiratory function tests
  • Infant
  • Preschool
  • Child
  • Lung function
  • Spirometry
  • Lung volumes
  • Diagnostic imaging
  • Radiology
  • X-ray
  • Computed tomography
  • Magnetic resonance imaging

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48835-6_6
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48835-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Fawke J, Lum S, Kirkby J, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  2. Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1178–84.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Halvorsen T, Skadberg BT, Eide GE, Roksund OD, Carlsen KH, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr. 2004;93(10):1294–300.

    CAS  PubMed  CrossRef  Google Scholar 

  4. American Thoracic S, European Respiratory S. ATS/ERS statement: raised volume forced expirations in infants: guidelines for current practice. Am J Respir Crit Care Med. 2005;172(11):1463–71.

    CrossRef  Google Scholar 

  5. Sly P, Tepper R, Henschen M, Gappa M, Stocks J. Testing EATFoSfIRF. Tidal forced expirations. Eur Respir J. 2000;16(4):741–8.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Gappa M, Colin AA, Goetz I, Stocks J. Society EATFoSfIRFTERSAT. Passive respiratory mechanics: the occlusion techniques. Eur Respir J. 2001;17(1):141–8.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Stocks J, Godfrey S, Beardsmore C, Bar-Yishay E, Castile R, Society EATFoSfIRFTERSAT. Plethysmographic measurements of lung volume and airway resistance. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/ American Thoracic Society. Eur Respir J. 2001;17(2):302–12.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Frey U, Stocks J, Coates A, Sly P, Bates J. Specifications for equipment used for infant pulmonary function testing. ERS/ATS task force on standards for infant respiratory function testing. European respiratory society/American thoracic society. Eur Respir J. 2000;16(4):731–40.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Morris MG, Gustafsson P, Tepper R, Gappa M, Stocks J. Testing EATFoSfIRF. The bias flow nitrogen washout technique for measuring the functional residual capacity in infants. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. Eur Respir J. 2001;17(3):529–36.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Castile R, Filbrun D, Flucke R, Franklin W, McCoy K. Adult-type pulmonary function tests in infants without respiratory disease. Pediatr Pulmonol. 2000;30(3):215–27.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Jones M, Castile R, Davis S, et al. Forced expiratory flows and volumes in infants. Normative data and lung growth. Am J Respir Crit Care Med. 2000;161(2 Pt 1):353–9.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Lum S, Bountziouka V, Wade A, et al. New reference ranges for interpreting forced expiratory manoeuvres in infants and implications for clinical interpretation: a multicentre collaboration. Thorax. 2016;71(3):276–83.

    PubMed  CrossRef  Google Scholar 

  13. Nguyen TTD, Hoo AF, Lum S, Wade A, Thia LP, Stocks J. New reference equations to improve interpretation of infant lung function. Pediatr Pulmonol. 2013;48(4):370–80.

    PubMed  CrossRef  Google Scholar 

  14. Davis SD, Rosenfeld M, Kerby GS, et al. Multicenter evaluation of infant lung function tests as cystic fibrosis clinical trial endpoints. Am J Respir Crit Care Med. 2010;182(11):1387–97.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Kao LC, Durand DJ, Nickerson BG. Effects of inhaled metaproterenol and atropine on the pulmonary mechanics of infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1989;6(2):74–80.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Kao LC, Warburton D, Cheng MH, Cedeño C, Platzker AC, Keens TG. Effect of oral diuretics on pulmonary mechanics in infants with chronic bronchopulmonary dysplasia: results of a double-blind crossover sequential trial. Pediatrics. 1984;74(1):37–44.

    CAS  PubMed  Google Scholar 

  17. Talmaciu I, Ren CL, Kolb SM, Hickey E, Panitch HB. Pulmonary function in technology-dependent children 2 years and older with bronchopulmonary dysplasia. Pediatr Pulmonol. Mar 2002;33(3):181–8.

    PubMed  CrossRef  Google Scholar 

  18. Baraldi E, Filippone M, Trevisanuto D, Zanardo V, Zacchello F. Pulmonary function until two years of life in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;155(1):149–55.

    Google Scholar 

  19. Mello RR, Silva KS, Costa AM, Ramos JR. Longitudinal assessment of the lung mechanics of very low birth weight preterm infants with and without bronchopulmonary dysplasia. Sao Paulo Med J. 2015;133(5):401–7.

    PubMed  CrossRef  Google Scholar 

  20. Morris MJ, Lane DJ. Tidal expiratory flow patterns in airflow obstruction. Thorax. 1981;36(2):135–42.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Van der Ent C, Brackel H, Van der Laag J, Bogaard JM. Tidal breathing analysis as a measure of airway obstruction in children three years of age and older. Am J Respir Crit Care Med. 1996;153(4):1253–8.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Martinez FD, Morgan WJ, Wright AL, Holberg CJ, Taussig LM. Diminished lung function as a predisposing factor for wheezing respiratory illness in infants. N Engl J Med. 1988;319(17):1112–7.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Håland G, Carlsen KCL, Sandvik L, et al. Reduced lung function at birth and the risk of asthma at 10 years of age. N Engl J Med. 2006;355(16):1682–9.

    PubMed  CrossRef  Google Scholar 

  24. Latzin P, Roth S, Thamrin C, et al. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants. PLoS One. 2009;4(2):e4635.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  25. Allen JL, Wolfson MR, Mcdowell K, Shaffer TH. Thoracoabdominal asynchrony in Infants with. Am Rev Respir Dis. 1990;141:337–42.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Warren R, Horan S, Robertson P. Chest wall motion in preterm infants using respiratory inductive plethysmography. Eur Respir J. 1997;10(10):2295–300.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Filippone M, Sartor M, Zacchello F, Baraldi E. Flow limitation in infants with bronchopulmonary dysplasia and respiratory function at school age. Lancet. 2003;361(9359):753–4.

    PubMed  CrossRef  Google Scholar 

  28. Sanchez-Solis M, Garcia-Marcos L, Bosch-Gimenez V, Perez-Fernandez V, Pastor-Vivero MD, Mondejar-Lopez P. Lung function among infants born preterm, with or without bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(7):674–81.

    PubMed  CrossRef  Google Scholar 

  29. Thunqvist P, Gustafsson P, Norman M, Wickman M, Hallberg J. Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(10):978–86.

    PubMed  CrossRef  Google Scholar 

  30. Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46(4):369–75.

    PubMed  CrossRef  Google Scholar 

  31. Hofhuis W, Huysman MWA, van der Wiel EC, et al. Worsening of V’maxFRC in infants with chronic lung disease in the first year of life: a more favorable outcome after high-frequency oscillation ventilation. Am J Respir Crit Care Med. 2002;166(12 Pt 1):1539–43.

    PubMed  CrossRef  Google Scholar 

  32. Hoo A-F, Dezateux C, Henschen M, Costeloe K, Stocks J. Development of airway function in infancy after preterm delivery. J Pediatr. 2002;141(5):652–8.

    PubMed  CrossRef  Google Scholar 

  33. Jobe AH. An unknown: lung growth and development after very preterm birth. Am J Respir Crit Care Med. 2002;166(12):1529–30.

    PubMed  CrossRef  Google Scholar 

  34. Friedrich L, Pitrez PMC, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Friedrich L, Stein RT, Pitrez PM, Corso AL, Jones MH. Reduced lung function in healthy preterm infants in the first months of life. Am J Respir Crit Care Med. 2006;173(4):442–7.

    PubMed  CrossRef  Google Scholar 

  36. Gerhardt T, Hehre D, Feller R, Reifenberg L, Bancalari E. Serial determination of pulmonary function in infants with chronic lung disease. J Pediatr. 1987;110(3):448–56.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Merth IT, de Winter JP, Borsboom GJ, Quanjer PH. Pulmonary function during the first year of life in healthy infants born prematurely. Eur Respir J. 1995;8(7):1141–7.

    CAS  PubMed  CrossRef  Google Scholar 

  38. de Winter JP, Merth IT, Brand R, Quanjer PH. Functional residual capacity and static compliance during the first year in preterm infants treated with surfactant. Am J Perinatol. 2000;17(7):377–84.

    PubMed  CrossRef  Google Scholar 

  39. Hjalmarson O, Sandberg K. Abnormal lung function in healthy preterm infants. Am J Respir Crit Care Med. 2002;165(1):83–7.

    PubMed  CrossRef  Google Scholar 

  40. Hulskamp G, Lum S, Stocks J, et al. Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: a multicentre study. Thorax. 2009;64(3):240–5.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Roughton F, Forster R. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11(2):290–302.

    CAS  PubMed  Google Scholar 

  42. Balinotti JE, Chakr VC, Tiller C, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181(10):1093–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Chang DV, Assaf SJ, Tiller CJ, Kisling JA, Tepper RS. Membrane and capillary components of lung diffusion in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2016;193(7):767–71.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Coalson JJ. Pathology of new bronchopulmonary dysplasia. Paper presented at: seminars in neonatology 2003.

    Google Scholar 

  46. Sobonya RE, Logvinoff M, Taussig L, Theriault A. Morphometric analysis of the lung in prolonged bronchopulmonary dysplasia. Pediatr Res. 1982;16(11):969–72.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Hislop A, Wigglesworth J, Desai R, Aber V. The effects of preterm delivery and mechanical ventilation on human lung growth. Early Hum Dev. 1987;15(3):147–64.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Assaf SJ, Chang DV, Tiller CJ, et al. Lung parenchymal development in premature infants without bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(12):1313–9.

    PubMed  CrossRef  Google Scholar 

  49. Beydon N, Davis SD, Lombardi E, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175(12):1304–45.

    PubMed  CrossRef  Google Scholar 

  50. Kairamkonda V, Richardson J, Subhedar N, Bridge P, Shaw N. Lung function measurement in prematurely born preschool children with and without chronic lung disease. J Perinatol. 2008;28(3):199–204.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Vrijlandt EJLE, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150(3):256–61.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Udomittipong K, Sly PD, Patterson HJ, Gangell CL, Stick SM, Hall GL. Forced oscillations in the clinical setting in young children with neonatal lung disease. Eur Respir J. 2008;31(6):1292–9.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Malmberg L, Mieskonen S, Pelkonen A, Kari A, Sovijärvi AR, Turpeinen M. Lung function measured by the oscillometric method in prematurely born children with chronic lung disease. Eur Respir J. 2000;16(4):598–603.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946–55.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Gross SJ, Iannuzzi DM, Kveselis DA, Anbar RD. Effect of preterm birth on pulmonary function at school age: a prospective controlled study. J Pediatr. 1998;133(2):188–92.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Giacoia GP, Venkataraman PS, West-Wilson KI, Faulkner MJ. Follow-up of school-age children with bronchopulmonary dysplasia. J Pediatr. 1997;130(3):400–8.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Korhonen P, Laitinen J, HyoUdynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatr. 2004;93(3):316–21.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Jacob SV, Lands LC, Coates AL, et al. Exercise ability in survivors of severe bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;155(6):1925–9.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171(1):68–72.

    PubMed  CrossRef  Google Scholar 

  60. Doyle LW, Anderson P, Callanan C, et al. Respiratory function at age 8–9 years in extremely low birthweight/very preterm children born in Victoria in 1991–1992. Pediatr Pulmonol. 2006;41(6):570–6.

    PubMed  CrossRef  Google Scholar 

  61. Doyle L, Cheung M, Ford G, Olinsky A, Davis N, Callanan C. Birth weight <1501 g and respiratory health at age 14. Arch Dis Child. 2001;84(1):40–4.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Kennedy JD, Edward LJ, Bates DJ, et al. Effects of birthweight and oxygen supplementation on lung function in late childhood in children of very low birth weight. Pediatr Pulmonol. 2000;30(1):32–40.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006;118(1):108–13.

    PubMed  CrossRef  Google Scholar 

  64. Vrijlandt EJLE, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med. 2006;173(8):890–6.

    PubMed  CrossRef  Google Scholar 

  65. Kaplan E, Bar-Yishay E, Prais D, et al. Encouraging pulmonary outcome for surviving, neurologically intact, extremely premature infants in the postsurfactant era. Chest. 2012;142(3):725–33.

    PubMed  CrossRef  Google Scholar 

  66. Lum S, Bush A, Stocks J. Clinical pulmonary function testing for children with bronchopulmonary dysplasia. Pediatr Allergy Immunol Pulmonol. 2011;24(2):77–88.

    CrossRef  Google Scholar 

  67. Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L. Lung function outcome at school age in very low birth weight children. Pediatr Pulmonol. 2013;48(8):830–7.

    PubMed  CrossRef  Google Scholar 

  68. Bush A. COPD: a pediatric disease. COPD: J Chron Obstruct Pulmon Dis. 2008;5(1):53–67.

    CrossRef  Google Scholar 

  69. Thébaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  70. Cristea IA, Ackerman VL, Swigonski NL, Yu ZP, Slaven JE, Davis SD. Physiologic findings in children previously ventilator dependent at home due to bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(11):1113–8.

    PubMed  CrossRef  Google Scholar 

  71. Blayney M, Kerem E, Whyte H, O’Brodovich H. Bronchopulmonary dysplasia: improvement in lung function between 7 and 10 years of age. J Pediatr. 1991;118(2):201–6.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Koumbourlis AC, Motoyama EK, Mutich RL, Mallory GB, Walczak SA, Fertal K. Longitudinal follow-up of lung function from childhood to adolescence in prematurely born patients with neonatal chronic lung disease. Pediatr Pulmonol. 1996;21(1):28–34.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Ronkainen E, Dunder T, Peltoniemi O, Kaukola T, Marttila R, Hallman M. New BPD predicts lung function at school age: Follow-up study and meta-analysis. Pediatr Pulmonol. 2015;50(11):1090–8.

    PubMed  CrossRef  Google Scholar 

  74. Northway Jr WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. Engl J Med. 1967;276(7):357–68.

    CrossRef  Google Scholar 

  75. Toce SS, Farrell PM, Leavitt LA, Samuels DP, Edwards DK. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984;138(6):581–5.

    CAS  PubMed  Google Scholar 

  76. Lucaya J, Garcia-Pena P, Herrera L, Enriquez G, Piqueras J. Expiratory chest CT in children. AJR Am J Roentgenol. 2000;174(1):235–41.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Long FR, Castile RG, Brody AS, et al. Lungs in infants and young children: improved thin-section CT with a noninvasive controlled-ventilation technique – initial experience. Radiology. 1999;212(2):588–93.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Oppenheim C. Bronchopulmonary dysplasia: value of CT in identifying pulmonary sequelae. Am J Roentgenol. 1994;163(1):4.

    CrossRef  Google Scholar 

  79. Aukland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax. 2009;64(5):405–10.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Kubota J. Ultrafast CT scoring system for assessing bronchopulmonary dysplasia: reproducibility and clinical correlation. Radiat Med. 1998;16(3):8.

    Google Scholar 

  81. Sarria E. Computed tomography score and pulmonary function in infants with chronic lung disease of infancy. Eur Respir J. 2011;38(4):6.

    CrossRef  Google Scholar 

  82. Shin S. Bronchopulmonary dysplasia: new high resolution computed tomography scoring system and correlation between the high resolution computed tomography score and clinical severity. Korean J Radiol. 2013;14(2):10.

    CrossRef  Google Scholar 

  83. Tonson la Tour AMD, Spadola LMD, Sayegh YMD, et al. Chest CT in bronchopulmonary dysplasia: Clinical and radiological correlations. Pediatr Pulmonol. 2013;48(7):693–8.

    PubMed  CrossRef  Google Scholar 

  84. Ochiai MM, Hikino SMP, Yabuuchi HMP, et al. A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr. 2008;152(1):90–5. 95e91-95e93

    PubMed  CrossRef  Google Scholar 

  85. Mahut B, De Blic J, Emond S, et al. Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F459–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Aukland SM, Halvorsen T, Fosse KR, Daltveit AK, Rosendahl K. High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. AJR Am J Roentgenol. 2006;187(4):1012–8.

    PubMed  CrossRef  Google Scholar 

  87. Boechat MCB, Mello RR, Silva KS, et al. A computed tomography scoring system to assess pulmonary disease among premature infants. Sao Paulo Med J. 2010;128(6):328–35.

    PubMed  Google Scholar 

  88. Howling SJ, Northway Jr WH, Hansell DM, Moss RB, Ward S, Muller NL. Pulmonary sequelae of bronchopulmonary dysplasia survivors: high-resolution CT findings. AJR Am J Roentgenol. 2000;174(5):1323–6.

    CAS  PubMed  CrossRef  Google Scholar 

  89. de Mello RR, Dutra MVP, Ramos JR, Daltro P, Boechat M, de Andrade Lopes JM. Lung mechanics and high-resolution computed tomography of the chest in very low birth weight premature infants. Sao Paulo Med J. 2003;121(4):167–72.

    PubMed  CrossRef  Google Scholar 

  90. Wong PM, Lees AN, Louw J, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J. 2008;32(2):321–8.

    CAS  PubMed  CrossRef  Google Scholar 

  91. van Mastrigt EMD, Logie KP, Ciet PMD, et al. Lung CT imaging in patients with bronchopulmonary dysplasia: a systematic review. Pediatr Pulmonol. 2016;51(9):975–86.

    PubMed  CrossRef  Google Scholar 

  92. Walkup LL, Roach DJ, Fleck RJ, Brody AS, Woods JC, Stein J. Quantitative CT Of bronchopulmonary dysplasia in the pediatric lung. C27 Neonat Pediatr Crit Care Am Thoracic Soc. 2015;A4090:A4090.

    Google Scholar 

  93. Muller NL. Computed tomography and magnetic resonance imaging: past, present and future. Eur Respir J Suppl. 2002;35:3s–12s.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Wielputz M, Kauczor H-U. MRI of the lung: state of the art. Diagn Interv Radiol. 2012;18(4):344–53.

    PubMed  Google Scholar 

  95. Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB. T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol. 1999;29(3):245–52.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Stock KW, Chen Q, Hatabu H, Edelman RR. Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging. 1999;17(7):997–1000.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Mulkern R, Haker S, Mamata H, et al. Lung parenchymal signal intensity in MRI: a technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences. Concep Magn Reson A. 2014;43(2):29–53.

    CrossRef  CAS  Google Scholar 

  98. Adams EW, Harrison MC, Counsell SJ, et al. Increased lung water and tissue damage in bronchopulmonary dysplasia. J Pediatr. 2004;145(4):503–7.

    PubMed  CrossRef  Google Scholar 

  99. Adams EW, Counsell SJ, Hajnal JV, et al. Magnetic resonance imaging of lung water content and distribution in term and preterm infants. Am J Respir Crit Care Med. 2002;166(3):397–402.

    PubMed  CrossRef  Google Scholar 

  100. Strang LB. Lung development: biological and clinical perspectives. Edited by Philip M. Farrell. Vol. I, Biochemistry and physiology. Pp. 407. £31.40, $47.50. Vol. II, Neonatal respiratory distress. Pp. 307. £24.80, $37.50. (Academic Press, 1982.). Q J Exp Physiol. 1984;69(1):212.

    CrossRef  Google Scholar 

  101. O’Brodovich HM. Immature epithelial Na+ channel expression is one of the pathogenetic mechanisms leading to human neonatal respiratory distress syndrome. Proc Assoc Am Physicians. 1996;108(5):345–55.

    PubMed  Google Scholar 

  102. Walkup LL, Tkach JA, Higano NS, et al. Quantitative magnetic resonance imaging of bronchopulmonary dysplasia in the neonatal intensive care unit environment. Am J Respir Crit Care Med. 2015;192(10):1215–22.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  103. Altes TA, Mata J, de Lange EE, Brookeman JR, Mugler III JP. Assessment of lung development using hyperpolarized helium-3 diffusion MR imaging. J Magn Reson Imaging. 2006;24(6):1277–83.

    PubMed  CrossRef  Google Scholar 

  104. Narayanan M, Beardsmore CS, Owers-Bradley J, et al. Catch-up alveolarization in ex-preterm children: evidence from (3)He magnetic resonance. Am J Respir Crit Care Med. 2013;187(10):1104–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ioana Cristea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cristea, A.I., Ren, C.L., Davis, S.D. (2017). Diagnostic Modalities: Pulmonary Function Testing and Imaging. In: Hibbs, A., Muhlebach , M. (eds) Respiratory Outcomes in Preterm Infants. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-48835-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48835-6_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-48834-9

  • Online ISBN: 978-3-319-48835-6

  • eBook Packages: MedicineMedicine (R0)