Skip to main content

Structural and Functional Changes in the Preterm Lung

  • 756 Accesses

Part of the Respiratory Medicine book series (RM)

Abstract

Preterm infants, particularly those with bronchopulmonary dysplasia (BPD), experience long-term structural and functional pulmonary changes. BPD is a chronic lung disease of premature infants that results from a developmental arrest of the immature lung caused by multiple injurious factors such as mechanical ventilation, oxygen exposure, and prenatal or postnatal infections. Over the last 40 years, the survival of preterm infants with BPD has significantly increased due to the improvements in neonatal intensive care and in respiratory support. Many of the early BPD survivors are now well into their adulthood, and this is providing new information on the long-term respiratory outcomes, both structural and functional, in these former preterm infants. Increasing evidence from clinical and research data indicate that survivors of preterm birth and particularly those with BPD have prolonged abnormalities in their lung structure, imaging studies, and lung function. This population is at a greater risk for rehospitalizations due to respiratory illnesses, often being admitted into pediatric intensive care units. It is also likely that BPD survivors may have a reduced ability to reach their peak lung function at young adulthood and may have an accelerated decline in function with aging. Increasing evidence suggests that even infants without BPD and late-preterm infants are at increased risk for acute and chronic respiratory morbidities. This chapter provides a brief overview of normal lung developmental processes, BPD pathogenesis, and long-term respiratory outcomes, including structural and functional changes, in preterm survivors.

Keywords

  • Preterm infants
  • Lung development
  • Bronchopulmonary dysplasia
  • Lung injury
  • Oxygen toxicity
  • Mechanical ventilation
  • Respiratory symptoms
  • Persistent structural abnormalities
  • Persistent radiographic abnormalities
  • Abnormal lung function

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48835-6_5
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48835-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Abbreviations

BPD:

Bronchopulmonary dysplasia

CPAP:

Continuous positive airway pressure

CTGF:

Connective tissue growth factor

COPD:

Chronic obstructive pulmonary disease

DLco:

Carbon monoxide diffusing capacity

FEV1 :

Forced expiratory volume in 1 s

FEV75 :

FEV at 75 % of expired FVC

FRC:

Functional residual capacity

FVC:

Forced vital capacity

HRCT:

High-resolution computed tomography

IL-1β:

Interleukin-1beta

IL-1RA:

IL-1 receptor antagonist

RSV:

Respiratory syncytial virus

RV:

Residual volume

TGF-β:

Transforming growth factor beta

Th1:

T-helper cytokines 1

TTN:

Transient tachypnea of newborn

VA:

Alveolar volume

VO2max :

Oxygen uptake at maximal exercise

VEGF:

Vascular endothelial growth factor

References

  1. Bhandari A, Bhandari V. Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics. 2009;123(6):1562–73.

    PubMed  CrossRef  Google Scholar 

  2. Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–40.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Van Marter LJ. Epidemiology of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14(6):358–66.

    PubMed  CrossRef  Google Scholar 

  4. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics. 2011;128(1):111–26.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–61.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;19(2):105–11.

    PubMed  CrossRef  Google Scholar 

  9. Greenough A. Long term respiratory outcomes of very premature birth (<32 weeks). Semin Fetal Neonatal Med. 2012;17(2):73–6.

    PubMed  CrossRef  Google Scholar 

  10. Gunville CF, Sontag MK, Stratton KA, Ranade DJ, Abman SH, Mourani PM. Scope and impact of early and late preterm infants admitted to the PICU with respiratory illness. J Pediatr. 2010;157(2):209–14. e1.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Tager IB, Weiss ST, Rosner B, Speizer FE. Effect of parental cigarette smoking on the pulmonary function of children. Am J Epidemiol. 1979;110(1):15–26.

    CAS  PubMed  Google Scholar 

  12. Wu S. Chapter 1 – Molecular bases for lung development, injury, and repair A2. In: Bancalari E, editor. The newborn lung: neonatology questions and controversies. 2 ed. Philadelphia: W.B. Saunders; 2012. p. 3–27.

    CrossRef  Google Scholar 

  13. Copland I, Post M. Lung development and fetal lung growth. Paediatr Respir Rev. 2004;5(Suppl A):S259–64.

    PubMed  CrossRef  Google Scholar 

  14. Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Bose CL, Dammann CE, Laughon MM. Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F455–61.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel D, et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 2009;123(4):1132–41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Cayabyab RG, Jones CA, Kwong KY, Hendershott C, Lecart C, Minoo P, et al. Interleukin-1beta in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome. J Matern Fetal Neonatal Med. 2003;14(3):205–11.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Nold MF, Mangan NE, Rudloff I, Cho SX, Shariatian N, Samarasinghe TD, et al. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A. 2013;110(35):14384–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis. 2015;9(4):188–97.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D, et al. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun. 2015;6:8977.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr. 1996;128(4):464–9.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Ichiba H, Saito M, Yamano T. Amniotic fluid transforming growth factor-beta1 and the risk for the development of neonatal bronchopulmonary dysplasia. Neonatology. 2009;96(3):156–61.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S. Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1429–33.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.

    CAS  PubMed  CrossRef  Google Scholar 

  26. de Winter P, Leoni P, Abraham D. Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008;26(2):80–91.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Howell DC, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G, et al. Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2001;159(4):1383–95.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Bonniaud P, Martin G, Margetts PJ, Ask K, Robertson J, Gauldie J, et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol. 2004;31(5):510–6.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Kambas K, Chrysanthopoulou A, Kourtzelis I, Skordala M, Mitroulis I, Rafail S, et al. Endothelin-1 signaling promotes fibrosis in vitro in a bronchopulmonary dysplasia model by activating the extrinsic coagulation cascade. J Immunol. 2011;186(11):6568–75.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Alapati D, Rong M, Chen S, Hehre D, Rodriguez MM, Lipson KE, et al. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol. 2011;45(6):1169–77.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Chen CM, Wang LF, Chou HC, Lang YD, Lai YP. Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res. 2007;62(2):128–33.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Wu S, Capasso L, Lessa A, Peng J, Kasisomayajula K, Rodriguez M, et al. High tidal volume ventilation activates Smad2 and upregulates expression of connective tissue growth factor in newborn rat lung. Pediatr Res. 2008;63(3):245–50.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Wallace MJ, Probyn ME, Zahra VA, Crossley K, Cole TJ, Davis PG, et al. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res. 2009;10:19.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  34. Chen S, Rong M, Platteau A, Hehre D, Smith H, Ruiz P, et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L330–40.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Greenough A, Alexander J, Burgess S, Chetcuti PA, Cox S, Lenney W, et al. Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease. Arch Dis Child. 2002;86(1):40–3.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Greenough A, Alexander J, Burgess S, Bytham J, Chetcuti PA, Hagan J, et al. Preschool healthcare utilisation related to home oxygen status. Arch Dis Child Fetal Neonatal Ed. 2006;91(5):F337–41.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Greenough A, Cox S, Alexander J, Lenney W, Turnbull F, Burgess S, et al. Health care utilisation of infants with chronic lung disease, related to hospitalisation for RSV infection. Arch Dis Child. 2001;85(6):463–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–5. e4.

    PubMed  CrossRef  Google Scholar 

  39. Gough A, Spence D, Linden M, Halliday HL, McGarvey LP. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review. Chest. 2012;141(6):1554–67.

    PubMed  CrossRef  Google Scholar 

  40. Gough A, Linden MA, Spence D, Halliday HL, Patterson CC, McGarvey L. Executive functioning deficits in young adult survivors of bronchopulmonary dysplasia. Disabil Rehabil. 2015;37(21):1940–5.

    PubMed  CrossRef  Google Scholar 

  41. Matias V, San Feliciano L, Fernandez JE, Lapena S, Garrido E, Ardura J, et al. Host and environmental factors influencing respiratory secretion of pro-wheezing biomarkers in preterm children. Pediatr Allergy Immunol. 2012;23(5):441–7.

    PubMed  CrossRef  Google Scholar 

  42. Teig N, Allali M, Rieger C, Hamelmann E. Inflammatory markers in induced sputum of school children born before 32 completed weeks of gestation. J Pediatr. 2012;161(6):1085–90.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Filippone M, Bonetto G, Corradi M, Frigo AC, Baraldi E. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Euro Respir J. 2012;40(5):1253–9.

    CrossRef  Google Scholar 

  44. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;136(3):769–80.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Cutz E, Chiasson D. Chronic Lung Disease after Premature Birth. Engl J Med. 2008;358:743–6.

    CAS  CrossRef  Google Scholar 

  46. Hislop AA, Wigglesworth JS, Desai R, Aber V. The effects of preterm delivery and mechanical ventilation on human lung growth. Early Hum Dev. 1987;15(3):147–64.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Thibeault DW, Mabry SM, Norberg M, Truog WE, Ekekezie II. Lung microvascular adaptation in infants with chronic lung disease. Biol Neonate. 2004;85(4):273–82.

    PubMed  CrossRef  Google Scholar 

  48. Hakulinen AL, Jarvenpaa AL, Turpeinen M, Sovijarvi A. Diffusing capacity of the lung in school-aged children born very preterm, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21(6):353–60.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Satrell E, Roksund O, Thorsen E, Halvorsen T. Pulmonary gas transfer in children and adolescents born extremely preterm. Eur Respir J. 2013;42(6):1536–44.

    PubMed  CrossRef  Google Scholar 

  50. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respor J. 2008;32(2):321–8.

    CAS  CrossRef  Google Scholar 

  51. Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L. Lung function outcome at school age in very low birth weight children. Pediatr Pulmonol. 2013;48(8):830–7.

    PubMed  CrossRef  Google Scholar 

  52. Ahlfeld SK, Conway SJ. Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):168–79.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Bolton CE, Stocks J, Hennessy E, Cockcroft JR, Fawke J, Lum S, et al. The EPICure study: association between hemodynamics and lung function at 11 years after extremely preterm birth. J Pediatr. 2012;161(4):595–601. e2.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Tonson la Tour A, Spadola L, Sayegh Y, Combescure C, Pfister R, Argiroffo CB, et al. Chest CT in bronchopulmonary dysplasia: clinical and radiological correlations. Pediatr Pulmonol. 2013;48(7):693–8.

    PubMed  CrossRef  Google Scholar 

  55. Wilson AC. What does imaging the chest tell us about bronchopulmonary dysplasia? Paediatr Respir Rev. 2010;11(3):158–61.

    PubMed  CrossRef  Google Scholar 

  56. Oppenheim C, Mamou-Mani T, Sayegh N, de Blic J, Scheinmann P, Lallemand D. Bronchopulmonary dysplasia: value of CT in identifying pulmonary sequelae. AJR Am J Roentgenol. 1994;163(1):169–72.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Aukland SM, Halvorsen T, Fosse KR, Daltveit AK, Rosendahl K. High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. Am J Roentgenol. 2006;187(4):1012–8.

    CrossRef  Google Scholar 

  58. Mahut B, De Blic J, Emond S, Benoist MR, Jarreau PH, Lacaze-Masmonteil T, et al. Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F459–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Aukland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax. 2009;64(5):405–10.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Vrijlandt EJ, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150(3):256–61.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Talmaciu I, Ren CL, Kolb SM, Hickey E, Panitch HB. Pulmonary function in technology-dependent children 2 years and older with bronchopulmonary dysplasia. Pediatr Pulmonol. 2002;33(3):181–8.

    PubMed  CrossRef  Google Scholar 

  62. Kairamkonda VR, Richardson J, Subhedar N, Bridge PD, Shaw NJ. Lung function measurement in prematurely born preschool children with and without chronic lung disease. J Perinatol. 2008;28(3):199–204.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46(4):369–75.

    PubMed  CrossRef  Google Scholar 

  64. Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Hoo AF, Dezateux C, Henschen M, Costeloe K, Stocks J. Development of airway function in infancy after preterm delivery. J Pediatr. 2002;141(5):652–8.

    PubMed  CrossRef  Google Scholar 

  66. Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760–6.

    PubMed  CrossRef  Google Scholar 

  67. Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1178–84.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Korhonen P, Laitinen J, Hyodynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatr. 2004;93(3):316–21.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Brostrom EB, Thunqvist P, Adenfelt G, Borling E, Katz-Salamon M. Obstructive lung disease in children with mild to severe BPD. Respir Med. 2010;104(3):362–70.

    PubMed  CrossRef  Google Scholar 

  70. Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171(1):68–72.

    PubMed  CrossRef  Google Scholar 

  71. Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med. 2006;173(8):890–6.

    PubMed  CrossRef  Google Scholar 

  72. Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76.

    PubMed  CrossRef  Google Scholar 

  73. Baraldi E, Filippone M, Trevisanuto D, Zanardo V, Zacchello F. Pulmonary function until two years of life in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;155 (1):149–55.

    Google Scholar 

  74. Thunqvist P, Gustafsson P, Norman M, Wickman M, Hallberg J. Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(10):978–86.

    PubMed  CrossRef  Google Scholar 

  75. Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181(10):1093–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  76. Kilbride HW, Gelatt MC, Sabath RJ. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J Pediatr. 2003;143(4):488–93.

    PubMed  CrossRef  Google Scholar 

  77. Smith LJ, van Asperen PP, McKay KO, Selvadurai H, Fitzgerald DA. Reduced exercise capacity in children born very preterm. Pediatrics. 2008;122(2):e287–93.

    PubMed  CrossRef  Google Scholar 

  78. Clemm H, Roksund O, Thorsen E, Eide GE, Markestad T, Halvorsen T. Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics. 2012;129(1):e97–e105.

    PubMed  CrossRef  Google Scholar 

  79. Kathegesu E, Beucher J, Daniel V, Guillot S, Lefeuvre S, Deneuville E, et al. Respiratory outcome of bronchopulmonary dysplasia in school-age children. Arch Pediatr. 2016;23(4):325–32.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Praprotnik M, Stucin Gantar I, Lucovnik M, Avcin T, Krivec U. Respiratory morbidity, lung function and fitness assessment after bronchopulmonary dysplasia. J Perinatol. 2015;35(12):1037–42.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Clemm HH, Vollsaeter M, Roksund OD, Markestad T, Halvorsen T. Adolescents who were born extremely preterm demonstrate modest decreases in exercise capacity. Acta Paediatr. 2015;104(11):1174–81.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Farrell ET, Bates ML, Pegelow DF, Palta M, Eickhoff JC, O’Brien MJ, et al. Pulmonary Gas Exchange and Exercise Capacity in Adults Born Preterm. Ann Am Thorac Soc. 2015;12(8):1130–7.

    PubMed  PubMed Central  Google Scholar 

  83. Tsopanoglou SP, Davidson J, Goulart AL, Barros MC, dos Santos AM. Functional capacity during exercise in very-low-birth-weight premature children. Pediatr Pulmonol. 2014;49(1):91–8.

    PubMed  CrossRef  Google Scholar 

  84. Clemm HH, Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc. 2014;11(4):537–45.

    PubMed  CrossRef  Google Scholar 

  85. Edwards MO, Kotecha SJ, Lowe J, Watkins WJ, Henderson AJ, Kotecha S. Effect of preterm birth on exercise capacity: a systematic review and meta-analysis. Pediatr Pulmonol. 2015;50(3):293–301.

    CrossRef  Google Scholar 

  86. Davidoff MJ, Dias T, Damus K, Russell R, Bettegowda VR, Dolan S, et al. Changes in the gestational age distribution among U.S. singleton births: impact on rates of late preterm birth, 1992 to 2002. Semin Perinatol. 2006;30(1):8–15.

    PubMed  CrossRef  Google Scholar 

  87. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Munson ML. Births: final data for 2002. Natl Vital Stat Rep. 2003;52(10):1–113.

    PubMed  Google Scholar 

  88. Pike KC, Lucas JS. Respiratory consequences of late preterm birth. Paediatr Respir Rev. 2015;16(3):182–8.

    PubMed  Google Scholar 

  89. Kotecha SJ, Dunstan FD, Kotecha S. Long term respiratory outcomes of late preterm-born infants. Semin Fetal Neonatal Med. 2012;17(2):77–81.

    PubMed  CrossRef  Google Scholar 

  90. Hibbard JU, Wilkins I, Sun L, Gregory K, Haberman S, Hoffman M, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304(4):419–25.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  91. Teune MJ, Bakhuizen S, Gyamfi Bannerman C, Opmeer BC, van Kaam AH, van Wassenaer AG, et al. A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gyn. 2011;205(4):374. e1-9.

    CrossRef  Google Scholar 

  92. Celik IH, Demirel G, Canpolat FE, Dilmen U. A common problem for neonatal intensive care units: late preterm infants, a prospective study with term controls in a large perinatal center. J Matern Fetal Neonatal Med. 2013;26(5):459–62.

    PubMed  CrossRef  Google Scholar 

  93. Resch B, Paes B. Are late preterm infants as susceptible to RSV infection as full term infants? Early Hum Dev. 2011;87(Suppl 1):S47–9.

    PubMed  CrossRef  Google Scholar 

  94. Carbonell-Estrany X, Bont L, Doering G, Gouyon JB, Lanari M. Clinical relevance of prevention of respiratory syncytial virus lower respiratory tract infection in preterm infants born between 33 and 35 weeks gestational age. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2008;27(10):891–9.

    CAS  CrossRef  Google Scholar 

  95. Colin AA, McEvoy C, Castile RG. Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics. 2010;126(1):115–28.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  96. Meert K, Heidemann S, Abella B, Sarnaik A. Does prematurity alter the course of respiratory syncytial virus infection? Crit Care Med. 1990;18(12):1357–9.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Boyce TG, Mellen BG, Mitchel Jr EF, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in medicaid. J Pediatr. 2000;137(6):865–70.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Sampalis JS. Morbidity and mortality after RSV-associated hospitalizations among premature Canadian infants. J Pediatr. 2003;143(5 Suppl):S150–6.

    PubMed  CrossRef  Google Scholar 

  99. Carbonell-Estrany X, Fullarton JR, Gooch KL, Vo PG, Figueras-Aloy J, Lanari M, et al. Effects of parental and household smoking on the risk of respiratory syncytial virus (RSV) hospitalisation in late-preterm infants and the potential impact of RSV prophylaxis. J Matern Fetal Neonatal Med. 2013;26(9):926–31.

    PubMed  CrossRef  Google Scholar 

  100. Goyal NK, Fiks AG, Lorch SA. Association of late-preterm birth with asthma in young children: practice-based study. Pediatrics. 2011;128(4):e830–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  101. Kugelman A, Colin AA. Late preterm infants: near term but still in a critical developmental time period. Pediatrics. 2013;132(4):741–51.

    PubMed  CrossRef  Google Scholar 

  102. Vrijlandt EJ, Kerstjens JM, Duiverman EJ, Bos AF, Reijneveld SA. Moderately preterm children have more respiratory problems during their first 5 years of life than children born full term. Am J Respir Crit Care Med. 2013;187(11):1234–40.

    PubMed  CrossRef  Google Scholar 

  103. Odibo IN, Bird TM, McKelvey SS, Sandlin A, Lowery C, Magann EF. Childhood respiratory morbidity after late preterm and early term delivery: a study of medicaid patients in South Carolina. Pediatr Perinat Epidemiol. 2016;30(1):67–75.

    CrossRef  Google Scholar 

  104. Crump C, Winkleby MA, Sundquist J, Sundquist K. Risk of asthma in young adults who were born preterm: a Swedish national cohort study. Pediatrics. 2011;127(4):e913–20.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  105. Todisco T, de Benedictis FM, Iannacci L, Baglioni S, Eslami A, Todisco E, et al. Mild prematurity and respiratory functions. Eur J Pediatr. 1993;152(1):55–8.

    CAS  PubMed  CrossRef  Google Scholar 

  106. Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67(1):54–61.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wu, S., Bancalari, E. (2017). Structural and Functional Changes in the Preterm Lung. In: Hibbs, A., Muhlebach , M. (eds) Respiratory Outcomes in Preterm Infants. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-48835-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48835-6_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-48834-9

  • Online ISBN: 978-3-319-48835-6

  • eBook Packages: MedicineMedicine (R0)