Skip to main content

Structural and Functional Changes in the Preterm Lung

  • Chapter
  • First Online:
Respiratory Outcomes in Preterm Infants

Part of the book series: Respiratory Medicine ((RM))

  • 840 Accesses

Abstract

Preterm infants, particularly those with bronchopulmonary dysplasia (BPD), experience long-term structural and functional pulmonary changes. BPD is a chronic lung disease of premature infants that results from a developmental arrest of the immature lung caused by multiple injurious factors such as mechanical ventilation, oxygen exposure, and prenatal or postnatal infections. Over the last 40 years, the survival of preterm infants with BPD has significantly increased due to the improvements in neonatal intensive care and in respiratory support. Many of the early BPD survivors are now well into their adulthood, and this is providing new information on the long-term respiratory outcomes, both structural and functional, in these former preterm infants. Increasing evidence from clinical and research data indicate that survivors of preterm birth and particularly those with BPD have prolonged abnormalities in their lung structure, imaging studies, and lung function. This population is at a greater risk for rehospitalizations due to respiratory illnesses, often being admitted into pediatric intensive care units. It is also likely that BPD survivors may have a reduced ability to reach their peak lung function at young adulthood and may have an accelerated decline in function with aging. Increasing evidence suggests that even infants without BPD and late-preterm infants are at increased risk for acute and chronic respiratory morbidities. This chapter provides a brief overview of normal lung developmental processes, BPD pathogenesis, and long-term respiratory outcomes, including structural and functional changes, in preterm survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPD:

Bronchopulmonary dysplasia

CPAP:

Continuous positive airway pressure

CTGF:

Connective tissue growth factor

COPD:

Chronic obstructive pulmonary disease

DLco:

Carbon monoxide diffusing capacity

FEV1 :

Forced expiratory volume in 1 s

FEV75 :

FEV at 75 % of expired FVC

FRC:

Functional residual capacity

FVC:

Forced vital capacity

HRCT:

High-resolution computed tomography

IL-1β:

Interleukin-1beta

IL-1RA:

IL-1 receptor antagonist

RSV:

Respiratory syncytial virus

RV:

Residual volume

TGF-β:

Transforming growth factor beta

Th1:

T-helper cytokines 1

TTN:

Transient tachypnea of newborn

VA:

Alveolar volume

VO2max :

Oxygen uptake at maximal exercise

VEGF:

Vascular endothelial growth factor

References

  1. Bhandari A, Bhandari V. Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics. 2009;123(6):1562–73.

    Article  PubMed  Google Scholar 

  2. Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Marter LJ. Epidemiology of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14(6):358–66.

    Article  PubMed  Google Scholar 

  4. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    Article  CAS  PubMed  Google Scholar 

  5. Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics. 2011;128(1):111–26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–61.

    Article  CAS  PubMed  Google Scholar 

  7. Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;19(2):105–11.

    Article  PubMed  Google Scholar 

  9. Greenough A. Long term respiratory outcomes of very premature birth (<32 weeks). Semin Fetal Neonatal Med. 2012;17(2):73–6.

    Article  PubMed  Google Scholar 

  10. Gunville CF, Sontag MK, Stratton KA, Ranade DJ, Abman SH, Mourani PM. Scope and impact of early and late preterm infants admitted to the PICU with respiratory illness. J Pediatr. 2010;157(2):209–14. e1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tager IB, Weiss ST, Rosner B, Speizer FE. Effect of parental cigarette smoking on the pulmonary function of children. Am J Epidemiol. 1979;110(1):15–26.

    CAS  PubMed  Google Scholar 

  12. Wu S. Chapter 1 – Molecular bases for lung development, injury, and repair A2. In: Bancalari E, editor. The newborn lung: neonatology questions and controversies. 2 ed. Philadelphia: W.B. Saunders; 2012. p. 3–27.

    Chapter  Google Scholar 

  13. Copland I, Post M. Lung development and fetal lung growth. Paediatr Respir Rev. 2004;5(Suppl A):S259–64.

    Article  PubMed  Google Scholar 

  14. Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.

    Article  CAS  PubMed  Google Scholar 

  15. Bose CL, Dammann CE, Laughon MM. Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F455–61.

    Article  CAS  PubMed  Google Scholar 

  16. Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel D, et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 2009;123(4):1132–41.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cayabyab RG, Jones CA, Kwong KY, Hendershott C, Lecart C, Minoo P, et al. Interleukin-1beta in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome. J Matern Fetal Neonatal Med. 2003;14(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  18. Nold MF, Mangan NE, Rudloff I, Cho SX, Shariatian N, Samarasinghe TD, et al. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A. 2013;110(35):14384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  20. Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis. 2015;9(4):188–97.

    Article  CAS  PubMed  Google Scholar 

  21. Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D, et al. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun. 2015;6:8977.

    Article  CAS  PubMed  Google Scholar 

  22. Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr. 1996;128(4):464–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ichiba H, Saito M, Yamano T. Amniotic fluid transforming growth factor-beta1 and the risk for the development of neonatal bronchopulmonary dysplasia. Neonatology. 2009;96(3):156–61.

    Article  CAS  PubMed  Google Scholar 

  24. Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S. Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1429–33.

    Article  CAS  PubMed  Google Scholar 

  25. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.

    Article  CAS  PubMed  Google Scholar 

  26. de Winter P, Leoni P, Abraham D. Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008;26(2):80–91.

    Article  PubMed  CAS  Google Scholar 

  27. Howell DC, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G, et al. Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2001;159(4):1383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonniaud P, Martin G, Margetts PJ, Ask K, Robertson J, Gauldie J, et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol. 2004;31(5):510–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kambas K, Chrysanthopoulou A, Kourtzelis I, Skordala M, Mitroulis I, Rafail S, et al. Endothelin-1 signaling promotes fibrosis in vitro in a bronchopulmonary dysplasia model by activating the extrinsic coagulation cascade. J Immunol. 2011;186(11):6568–75.

    Article  CAS  PubMed  Google Scholar 

  30. Alapati D, Rong M, Chen S, Hehre D, Rodriguez MM, Lipson KE, et al. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol. 2011;45(6):1169–77.

    Article  CAS  PubMed  Google Scholar 

  31. Chen CM, Wang LF, Chou HC, Lang YD, Lai YP. Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res. 2007;62(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  32. Wu S, Capasso L, Lessa A, Peng J, Kasisomayajula K, Rodriguez M, et al. High tidal volume ventilation activates Smad2 and upregulates expression of connective tissue growth factor in newborn rat lung. Pediatr Res. 2008;63(3):245–50.

    Article  CAS  PubMed  Google Scholar 

  33. Wallace MJ, Probyn ME, Zahra VA, Crossley K, Cole TJ, Davis PG, et al. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res. 2009;10:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen S, Rong M, Platteau A, Hehre D, Smith H, Ruiz P, et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L330–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Greenough A, Alexander J, Burgess S, Chetcuti PA, Cox S, Lenney W, et al. Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease. Arch Dis Child. 2002;86(1):40–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greenough A, Alexander J, Burgess S, Bytham J, Chetcuti PA, Hagan J, et al. Preschool healthcare utilisation related to home oxygen status. Arch Dis Child Fetal Neonatal Ed. 2006;91(5):F337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenough A, Cox S, Alexander J, Lenney W, Turnbull F, Burgess S, et al. Health care utilisation of infants with chronic lung disease, related to hospitalisation for RSV infection. Arch Dis Child. 2001;85(6):463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–5. e4.

    Article  PubMed  Google Scholar 

  39. Gough A, Spence D, Linden M, Halliday HL, McGarvey LP. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review. Chest. 2012;141(6):1554–67.

    Article  PubMed  Google Scholar 

  40. Gough A, Linden MA, Spence D, Halliday HL, Patterson CC, McGarvey L. Executive functioning deficits in young adult survivors of bronchopulmonary dysplasia. Disabil Rehabil. 2015;37(21):1940–5.

    Article  PubMed  Google Scholar 

  41. Matias V, San Feliciano L, Fernandez JE, Lapena S, Garrido E, Ardura J, et al. Host and environmental factors influencing respiratory secretion of pro-wheezing biomarkers in preterm children. Pediatr Allergy Immunol. 2012;23(5):441–7.

    Article  PubMed  Google Scholar 

  42. Teig N, Allali M, Rieger C, Hamelmann E. Inflammatory markers in induced sputum of school children born before 32 completed weeks of gestation. J Pediatr. 2012;161(6):1085–90.

    Article  CAS  PubMed  Google Scholar 

  43. Filippone M, Bonetto G, Corradi M, Frigo AC, Baraldi E. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Euro Respir J. 2012;40(5):1253–9.

    Article  Google Scholar 

  44. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;136(3):769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cutz E, Chiasson D. Chronic Lung Disease after Premature Birth. Engl J Med. 2008;358:743–6.

    Article  CAS  Google Scholar 

  46. Hislop AA, Wigglesworth JS, Desai R, Aber V. The effects of preterm delivery and mechanical ventilation on human lung growth. Early Hum Dev. 1987;15(3):147–64.

    Article  CAS  PubMed  Google Scholar 

  47. Thibeault DW, Mabry SM, Norberg M, Truog WE, Ekekezie II. Lung microvascular adaptation in infants with chronic lung disease. Biol Neonate. 2004;85(4):273–82.

    Article  PubMed  Google Scholar 

  48. Hakulinen AL, Jarvenpaa AL, Turpeinen M, Sovijarvi A. Diffusing capacity of the lung in school-aged children born very preterm, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21(6):353–60.

    Article  CAS  PubMed  Google Scholar 

  49. Satrell E, Roksund O, Thorsen E, Halvorsen T. Pulmonary gas transfer in children and adolescents born extremely preterm. Eur Respir J. 2013;42(6):1536–44.

    Article  PubMed  Google Scholar 

  50. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respor J. 2008;32(2):321–8.

    Article  CAS  Google Scholar 

  51. Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L. Lung function outcome at school age in very low birth weight children. Pediatr Pulmonol. 2013;48(8):830–7.

    Article  PubMed  Google Scholar 

  52. Ahlfeld SK, Conway SJ. Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bolton CE, Stocks J, Hennessy E, Cockcroft JR, Fawke J, Lum S, et al. The EPICure study: association between hemodynamics and lung function at 11 years after extremely preterm birth. J Pediatr. 2012;161(4):595–601. e2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tonson la Tour A, Spadola L, Sayegh Y, Combescure C, Pfister R, Argiroffo CB, et al. Chest CT in bronchopulmonary dysplasia: clinical and radiological correlations. Pediatr Pulmonol. 2013;48(7):693–8.

    Article  PubMed  Google Scholar 

  55. Wilson AC. What does imaging the chest tell us about bronchopulmonary dysplasia? Paediatr Respir Rev. 2010;11(3):158–61.

    Article  PubMed  Google Scholar 

  56. Oppenheim C, Mamou-Mani T, Sayegh N, de Blic J, Scheinmann P, Lallemand D. Bronchopulmonary dysplasia: value of CT in identifying pulmonary sequelae. AJR Am J Roentgenol. 1994;163(1):169–72.

    Article  CAS  PubMed  Google Scholar 

  57. Aukland SM, Halvorsen T, Fosse KR, Daltveit AK, Rosendahl K. High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. Am J Roentgenol. 2006;187(4):1012–8.

    Article  Google Scholar 

  58. Mahut B, De Blic J, Emond S, Benoist MR, Jarreau PH, Lacaze-Masmonteil T, et al. Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F459–64.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aukland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax. 2009;64(5):405–10.

    Article  CAS  PubMed  Google Scholar 

  60. Vrijlandt EJ, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150(3):256–61.

    Article  CAS  PubMed  Google Scholar 

  61. Talmaciu I, Ren CL, Kolb SM, Hickey E, Panitch HB. Pulmonary function in technology-dependent children 2 years and older with bronchopulmonary dysplasia. Pediatr Pulmonol. 2002;33(3):181–8.

    Article  PubMed  Google Scholar 

  62. Kairamkonda VR, Richardson J, Subhedar N, Bridge PD, Shaw NJ. Lung function measurement in prematurely born preschool children with and without chronic lung disease. J Perinatol. 2008;28(3):199–204.

    Article  CAS  PubMed  Google Scholar 

  63. Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46(4):369–75.

    Article  PubMed  Google Scholar 

  64. Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hoo AF, Dezateux C, Henschen M, Costeloe K, Stocks J. Development of airway function in infancy after preterm delivery. J Pediatr. 2002;141(5):652–8.

    Article  PubMed  Google Scholar 

  66. Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760–6.

    Article  PubMed  Google Scholar 

  67. Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1178–84.

    Article  CAS  PubMed  Google Scholar 

  68. Korhonen P, Laitinen J, Hyodynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatr. 2004;93(3):316–21.

    Article  CAS  PubMed  Google Scholar 

  69. Brostrom EB, Thunqvist P, Adenfelt G, Borling E, Katz-Salamon M. Obstructive lung disease in children with mild to severe BPD. Respir Med. 2010;104(3):362–70.

    Article  PubMed  Google Scholar 

  70. Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171(1):68–72.

    Article  PubMed  Google Scholar 

  71. Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med. 2006;173(8):890–6.

    Article  PubMed  Google Scholar 

  72. Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76.

    Article  PubMed  Google Scholar 

  73. Baraldi E, Filippone M, Trevisanuto D, Zanardo V, Zacchello F. Pulmonary function until two years of life in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;155 (1):149–55.

    Google Scholar 

  74. Thunqvist P, Gustafsson P, Norman M, Wickman M, Hallberg J. Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(10):978–86.

    Article  PubMed  Google Scholar 

  75. Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181(10):1093–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kilbride HW, Gelatt MC, Sabath RJ. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J Pediatr. 2003;143(4):488–93.

    Article  PubMed  Google Scholar 

  77. Smith LJ, van Asperen PP, McKay KO, Selvadurai H, Fitzgerald DA. Reduced exercise capacity in children born very preterm. Pediatrics. 2008;122(2):e287–93.

    Article  PubMed  Google Scholar 

  78. Clemm H, Roksund O, Thorsen E, Eide GE, Markestad T, Halvorsen T. Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics. 2012;129(1):e97–e105.

    Article  PubMed  Google Scholar 

  79. Kathegesu E, Beucher J, Daniel V, Guillot S, Lefeuvre S, Deneuville E, et al. Respiratory outcome of bronchopulmonary dysplasia in school-age children. Arch Pediatr. 2016;23(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  80. Praprotnik M, Stucin Gantar I, Lucovnik M, Avcin T, Krivec U. Respiratory morbidity, lung function and fitness assessment after bronchopulmonary dysplasia. J Perinatol. 2015;35(12):1037–42.

    Article  CAS  PubMed  Google Scholar 

  81. Clemm HH, Vollsaeter M, Roksund OD, Markestad T, Halvorsen T. Adolescents who were born extremely preterm demonstrate modest decreases in exercise capacity. Acta Paediatr. 2015;104(11):1174–81.

    Article  CAS  PubMed  Google Scholar 

  82. Farrell ET, Bates ML, Pegelow DF, Palta M, Eickhoff JC, O’Brien MJ, et al. Pulmonary Gas Exchange and Exercise Capacity in Adults Born Preterm. Ann Am Thorac Soc. 2015;12(8):1130–7.

    PubMed  PubMed Central  Google Scholar 

  83. Tsopanoglou SP, Davidson J, Goulart AL, Barros MC, dos Santos AM. Functional capacity during exercise in very-low-birth-weight premature children. Pediatr Pulmonol. 2014;49(1):91–8.

    Article  PubMed  Google Scholar 

  84. Clemm HH, Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc. 2014;11(4):537–45.

    Article  PubMed  Google Scholar 

  85. Edwards MO, Kotecha SJ, Lowe J, Watkins WJ, Henderson AJ, Kotecha S. Effect of preterm birth on exercise capacity: a systematic review and meta-analysis. Pediatr Pulmonol. 2015;50(3):293–301.

    Article  Google Scholar 

  86. Davidoff MJ, Dias T, Damus K, Russell R, Bettegowda VR, Dolan S, et al. Changes in the gestational age distribution among U.S. singleton births: impact on rates of late preterm birth, 1992 to 2002. Semin Perinatol. 2006;30(1):8–15.

    Article  PubMed  Google Scholar 

  87. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Munson ML. Births: final data for 2002. Natl Vital Stat Rep. 2003;52(10):1–113.

    PubMed  Google Scholar 

  88. Pike KC, Lucas JS. Respiratory consequences of late preterm birth. Paediatr Respir Rev. 2015;16(3):182–8.

    PubMed  Google Scholar 

  89. Kotecha SJ, Dunstan FD, Kotecha S. Long term respiratory outcomes of late preterm-born infants. Semin Fetal Neonatal Med. 2012;17(2):77–81.

    Article  PubMed  Google Scholar 

  90. Hibbard JU, Wilkins I, Sun L, Gregory K, Haberman S, Hoffman M, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304(4):419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Teune MJ, Bakhuizen S, Gyamfi Bannerman C, Opmeer BC, van Kaam AH, van Wassenaer AG, et al. A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gyn. 2011;205(4):374. e1-9.

    Article  Google Scholar 

  92. Celik IH, Demirel G, Canpolat FE, Dilmen U. A common problem for neonatal intensive care units: late preterm infants, a prospective study with term controls in a large perinatal center. J Matern Fetal Neonatal Med. 2013;26(5):459–62.

    Article  PubMed  Google Scholar 

  93. Resch B, Paes B. Are late preterm infants as susceptible to RSV infection as full term infants? Early Hum Dev. 2011;87(Suppl 1):S47–9.

    Article  PubMed  Google Scholar 

  94. Carbonell-Estrany X, Bont L, Doering G, Gouyon JB, Lanari M. Clinical relevance of prevention of respiratory syncytial virus lower respiratory tract infection in preterm infants born between 33 and 35 weeks gestational age. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2008;27(10):891–9.

    Article  CAS  Google Scholar 

  95. Colin AA, McEvoy C, Castile RG. Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics. 2010;126(1):115–28.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Meert K, Heidemann S, Abella B, Sarnaik A. Does prematurity alter the course of respiratory syncytial virus infection? Crit Care Med. 1990;18(12):1357–9.

    Article  CAS  PubMed  Google Scholar 

  97. Boyce TG, Mellen BG, Mitchel Jr EF, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in medicaid. J Pediatr. 2000;137(6):865–70.

    Article  CAS  PubMed  Google Scholar 

  98. Sampalis JS. Morbidity and mortality after RSV-associated hospitalizations among premature Canadian infants. J Pediatr. 2003;143(5 Suppl):S150–6.

    Article  PubMed  Google Scholar 

  99. Carbonell-Estrany X, Fullarton JR, Gooch KL, Vo PG, Figueras-Aloy J, Lanari M, et al. Effects of parental and household smoking on the risk of respiratory syncytial virus (RSV) hospitalisation in late-preterm infants and the potential impact of RSV prophylaxis. J Matern Fetal Neonatal Med. 2013;26(9):926–31.

    Article  PubMed  Google Scholar 

  100. Goyal NK, Fiks AG, Lorch SA. Association of late-preterm birth with asthma in young children: practice-based study. Pediatrics. 2011;128(4):e830–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kugelman A, Colin AA. Late preterm infants: near term but still in a critical developmental time period. Pediatrics. 2013;132(4):741–51.

    Article  PubMed  Google Scholar 

  102. Vrijlandt EJ, Kerstjens JM, Duiverman EJ, Bos AF, Reijneveld SA. Moderately preterm children have more respiratory problems during their first 5 years of life than children born full term. Am J Respir Crit Care Med. 2013;187(11):1234–40.

    Article  PubMed  Google Scholar 

  103. Odibo IN, Bird TM, McKelvey SS, Sandlin A, Lowery C, Magann EF. Childhood respiratory morbidity after late preterm and early term delivery: a study of medicaid patients in South Carolina. Pediatr Perinat Epidemiol. 2016;30(1):67–75.

    Article  Google Scholar 

  104. Crump C, Winkleby MA, Sundquist J, Sundquist K. Risk of asthma in young adults who were born preterm: a Swedish national cohort study. Pediatrics. 2011;127(4):e913–20.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Todisco T, de Benedictis FM, Iannacci L, Baglioni S, Eslami A, Todisco E, et al. Mild prematurity and respiratory functions. Eur J Pediatr. 1993;152(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  106. Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67(1):54–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wu, S., Bancalari, E. (2017). Structural and Functional Changes in the Preterm Lung. In: Hibbs, A., Muhlebach , M. (eds) Respiratory Outcomes in Preterm Infants. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-48835-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48835-6_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-48834-9

  • Online ISBN: 978-3-319-48835-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics