Structural and Functional Changes in the Preterm Lung

  • Shu WuEmail author
  • Eduardo Bancalari
Part of the Respiratory Medicine book series (RM)


Preterm infants, particularly those with bronchopulmonary dysplasia (BPD), experience long-term structural and functional pulmonary changes. BPD is a chronic lung disease of premature infants that results from a developmental arrest of the immature lung caused by multiple injurious factors such as mechanical ventilation, oxygen exposure, and prenatal or postnatal infections. Over the last 40 years, the survival of preterm infants with BPD has significantly increased due to the improvements in neonatal intensive care and in respiratory support. Many of the early BPD survivors are now well into their adulthood, and this is providing new information on the long-term respiratory outcomes, both structural and functional, in these former preterm infants. Increasing evidence from clinical and research data indicate that survivors of preterm birth and particularly those with BPD have prolonged abnormalities in their lung structure, imaging studies, and lung function. This population is at a greater risk for rehospitalizations due to respiratory illnesses, often being admitted into pediatric intensive care units. It is also likely that BPD survivors may have a reduced ability to reach their peak lung function at young adulthood and may have an accelerated decline in function with aging. Increasing evidence suggests that even infants without BPD and late-preterm infants are at increased risk for acute and chronic respiratory morbidities. This chapter provides a brief overview of normal lung developmental processes, BPD pathogenesis, and long-term respiratory outcomes, including structural and functional changes, in preterm survivors.


Preterm infants Lung development Bronchopulmonary dysplasia Lung injury Oxygen toxicity Mechanical ventilation Respiratory symptoms Persistent structural abnormalities Persistent radiographic abnormalities Abnormal lung function 



Bronchopulmonary dysplasia


Continuous positive airway pressure


Connective tissue growth factor


Chronic obstructive pulmonary disease


Carbon monoxide diffusing capacity


Forced expiratory volume in 1 s


FEV at 75 % of expired FVC


Functional residual capacity


Forced vital capacity


High-resolution computed tomography




IL-1 receptor antagonist


Respiratory syncytial virus


Residual volume


Transforming growth factor beta


T-helper cytokines 1


Transient tachypnea of newborn


Alveolar volume


Oxygen uptake at maximal exercise


Vascular endothelial growth factor


  1. 1.
    Bhandari A, Bhandari V. Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics. 2009;123(6):1562–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–40.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Van Marter LJ. Epidemiology of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14(6):358–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics. 2011;128(1):111–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med. 2007;175(10):978–85.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. Semin Fetal Neonatal Med. 2014;19(2):105–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Greenough A. Long term respiratory outcomes of very premature birth (<32 weeks). Semin Fetal Neonatal Med. 2012;17(2):73–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Gunville CF, Sontag MK, Stratton KA, Ranade DJ, Abman SH, Mourani PM. Scope and impact of early and late preterm infants admitted to the PICU with respiratory illness. J Pediatr. 2010;157(2):209–14. e1.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tager IB, Weiss ST, Rosner B, Speizer FE. Effect of parental cigarette smoking on the pulmonary function of children. Am J Epidemiol. 1979;110(1):15–26.PubMedGoogle Scholar
  12. 12.
    Wu S. Chapter 1 – Molecular bases for lung development, injury, and repair A2. In: Bancalari E, editor. The newborn lung: neonatology questions and controversies. 2 ed. Philadelphia: W.B. Saunders; 2012. p. 3–27.CrossRefGoogle Scholar
  13. 13.
    Copland I, Post M. Lung development and fetal lung growth. Paediatr Respir Rev. 2004;5(Suppl A):S259–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Bose CL, Dammann CE, Laughon MM. Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F455–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel D, et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 2009;123(4):1132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cayabyab RG, Jones CA, Kwong KY, Hendershott C, Lecart C, Minoo P, et al. Interleukin-1beta in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome. J Matern Fetal Neonatal Med. 2003;14(3):205–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Nold MF, Mangan NE, Rudloff I, Cho SX, Shariatian N, Samarasinghe TD, et al. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A. 2013;110(35):14384–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis. 2015;9(4):188–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D, et al. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun. 2015;6:8977.PubMedCrossRefGoogle Scholar
  22. 22.
    Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr. 1996;128(4):464–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ichiba H, Saito M, Yamano T. Amniotic fluid transforming growth factor-beta1 and the risk for the development of neonatal bronchopulmonary dysplasia. Neonatology. 2009;96(3):156–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S. Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1429–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.PubMedCrossRefGoogle Scholar
  26. 26.
    de Winter P, Leoni P, Abraham D. Connective tissue growth factor: structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008;26(2):80–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Howell DC, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G, et al. Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2001;159(4):1383–95.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bonniaud P, Martin G, Margetts PJ, Ask K, Robertson J, Gauldie J, et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol. 2004;31(5):510–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Kambas K, Chrysanthopoulou A, Kourtzelis I, Skordala M, Mitroulis I, Rafail S, et al. Endothelin-1 signaling promotes fibrosis in vitro in a bronchopulmonary dysplasia model by activating the extrinsic coagulation cascade. J Immunol. 2011;186(11):6568–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Alapati D, Rong M, Chen S, Hehre D, Rodriguez MM, Lipson KE, et al. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol. 2011;45(6):1169–77.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen CM, Wang LF, Chou HC, Lang YD, Lai YP. Up-regulation of connective tissue growth factor in hyperoxia-induced lung fibrosis. Pediatr Res. 2007;62(2):128–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu S, Capasso L, Lessa A, Peng J, Kasisomayajula K, Rodriguez M, et al. High tidal volume ventilation activates Smad2 and upregulates expression of connective tissue growth factor in newborn rat lung. Pediatr Res. 2008;63(3):245–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Wallace MJ, Probyn ME, Zahra VA, Crossley K, Cole TJ, Davis PG, et al. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res. 2009;10:19.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chen S, Rong M, Platteau A, Hehre D, Smith H, Ruiz P, et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L330–40.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Greenough A, Alexander J, Burgess S, Chetcuti PA, Cox S, Lenney W, et al. Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease. Arch Dis Child. 2002;86(1):40–3.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Greenough A, Alexander J, Burgess S, Bytham J, Chetcuti PA, Hagan J, et al. Preschool healthcare utilisation related to home oxygen status. Arch Dis Child Fetal Neonatal Ed. 2006;91(5):F337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Greenough A, Cox S, Alexander J, Lenney W, Turnbull F, Burgess S, et al. Health care utilisation of infants with chronic lung disease, related to hospitalisation for RSV infection. Arch Dis Child. 2001;85(6):463–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–5. e4.PubMedCrossRefGoogle Scholar
  39. 39.
    Gough A, Spence D, Linden M, Halliday HL, McGarvey LP. General and respiratory health outcomes in adult survivors of bronchopulmonary dysplasia: a systematic review. Chest. 2012;141(6):1554–67.PubMedCrossRefGoogle Scholar
  40. 40.
    Gough A, Linden MA, Spence D, Halliday HL, Patterson CC, McGarvey L. Executive functioning deficits in young adult survivors of bronchopulmonary dysplasia. Disabil Rehabil. 2015;37(21):1940–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Matias V, San Feliciano L, Fernandez JE, Lapena S, Garrido E, Ardura J, et al. Host and environmental factors influencing respiratory secretion of pro-wheezing biomarkers in preterm children. Pediatr Allergy Immunol. 2012;23(5):441–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Teig N, Allali M, Rieger C, Hamelmann E. Inflammatory markers in induced sputum of school children born before 32 completed weeks of gestation. J Pediatr. 2012;161(6):1085–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Filippone M, Bonetto G, Corradi M, Frigo AC, Baraldi E. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Euro Respir J. 2012;40(5):1253–9.CrossRefGoogle Scholar
  44. 44.
    Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;136(3):769–80.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cutz E, Chiasson D. Chronic Lung Disease after Premature Birth. Engl J Med. 2008;358:743–6.CrossRefGoogle Scholar
  46. 46.
    Hislop AA, Wigglesworth JS, Desai R, Aber V. The effects of preterm delivery and mechanical ventilation on human lung growth. Early Hum Dev. 1987;15(3):147–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Thibeault DW, Mabry SM, Norberg M, Truog WE, Ekekezie II. Lung microvascular adaptation in infants with chronic lung disease. Biol Neonate. 2004;85(4):273–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Hakulinen AL, Jarvenpaa AL, Turpeinen M, Sovijarvi A. Diffusing capacity of the lung in school-aged children born very preterm, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21(6):353–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Satrell E, Roksund O, Thorsen E, Halvorsen T. Pulmonary gas transfer in children and adolescents born extremely preterm. Eur Respir J. 2013;42(6):1536–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respor J. 2008;32(2):321–8.CrossRefGoogle Scholar
  51. 51.
    Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L. Lung function outcome at school age in very low birth weight children. Pediatr Pulmonol. 2013;48(8):830–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Ahlfeld SK, Conway SJ. Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):168–79.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bolton CE, Stocks J, Hennessy E, Cockcroft JR, Fawke J, Lum S, et al. The EPICure study: association between hemodynamics and lung function at 11 years after extremely preterm birth. J Pediatr. 2012;161(4):595–601. e2.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tonson la Tour A, Spadola L, Sayegh Y, Combescure C, Pfister R, Argiroffo CB, et al. Chest CT in bronchopulmonary dysplasia: clinical and radiological correlations. Pediatr Pulmonol. 2013;48(7):693–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Wilson AC. What does imaging the chest tell us about bronchopulmonary dysplasia? Paediatr Respir Rev. 2010;11(3):158–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Oppenheim C, Mamou-Mani T, Sayegh N, de Blic J, Scheinmann P, Lallemand D. Bronchopulmonary dysplasia: value of CT in identifying pulmonary sequelae. AJR Am J Roentgenol. 1994;163(1):169–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Aukland SM, Halvorsen T, Fosse KR, Daltveit AK, Rosendahl K. High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. Am J Roentgenol. 2006;187(4):1012–8.CrossRefGoogle Scholar
  58. 58.
    Mahut B, De Blic J, Emond S, Benoist MR, Jarreau PH, Lacaze-Masmonteil T, et al. Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F459–64.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Aukland SM, Rosendahl K, Owens CM, Fosse KR, Eide GE, Halvorsen T. Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax. 2009;64(5):405–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Vrijlandt EJ, Boezen HM, Gerritsen J, Stremmelaar EF, Duiverman EJ. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150(3):256–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Talmaciu I, Ren CL, Kolb SM, Hickey E, Panitch HB. Pulmonary function in technology-dependent children 2 years and older with bronchopulmonary dysplasia. Pediatr Pulmonol. 2002;33(3):181–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Kairamkonda VR, Richardson J, Subhedar N, Bridge PD, Shaw NJ. Lung function measurement in prematurely born preschool children with and without chronic lung disease. J Perinatol. 2008;28(3):199–204.PubMedCrossRefGoogle Scholar
  63. 63.
    Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46(4):369–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hoo AF, Dezateux C, Henschen M, Costeloe K, Stocks J. Development of airway function in infancy after preterm delivery. J Pediatr. 2002;141(5):652–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Kotecha SJ, Edwards MO, Watkins WJ, Henderson AJ, Paranjothy S, Dunstan FD, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1178–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Korhonen P, Laitinen J, Hyodynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatr. 2004;93(3):316–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Brostrom EB, Thunqvist P, Adenfelt G, Borling E, Katz-Salamon M. Obstructive lung disease in children with mild to severe BPD. Respir Med. 2010;104(3):362–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Baraldi E, Bonetto G, Zacchello F, Filippone M. Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med. 2005;171(1):68–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med. 2006;173(8):890–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Lung function after preterm birth: development from mid-childhood to adulthood. Thorax. 2013;68(8):767–76.PubMedCrossRefGoogle Scholar
  73. 73.
    Baraldi E, Filippone M, Trevisanuto D, Zanardo V, Zacchello F. Pulmonary function until two years of life in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1997;155 (1):149–55.Google Scholar
  74. 74.
    Thunqvist P, Gustafsson P, Norman M, Wickman M, Hallberg J. Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr Pulmonol. 2015;50(10):978–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181(10):1093–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kilbride HW, Gelatt MC, Sabath RJ. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J Pediatr. 2003;143(4):488–93.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith LJ, van Asperen PP, McKay KO, Selvadurai H, Fitzgerald DA. Reduced exercise capacity in children born very preterm. Pediatrics. 2008;122(2):e287–93.PubMedCrossRefGoogle Scholar
  78. 78.
    Clemm H, Roksund O, Thorsen E, Eide GE, Markestad T, Halvorsen T. Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics. 2012;129(1):e97–e105.PubMedCrossRefGoogle Scholar
  79. 79.
    Kathegesu E, Beucher J, Daniel V, Guillot S, Lefeuvre S, Deneuville E, et al. Respiratory outcome of bronchopulmonary dysplasia in school-age children. Arch Pediatr. 2016;23(4):325–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Praprotnik M, Stucin Gantar I, Lucovnik M, Avcin T, Krivec U. Respiratory morbidity, lung function and fitness assessment after bronchopulmonary dysplasia. J Perinatol. 2015;35(12):1037–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Clemm HH, Vollsaeter M, Roksund OD, Markestad T, Halvorsen T. Adolescents who were born extremely preterm demonstrate modest decreases in exercise capacity. Acta Paediatr. 2015;104(11):1174–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Farrell ET, Bates ML, Pegelow DF, Palta M, Eickhoff JC, O’Brien MJ, et al. Pulmonary Gas Exchange and Exercise Capacity in Adults Born Preterm. Ann Am Thorac Soc. 2015;12(8):1130–7.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tsopanoglou SP, Davidson J, Goulart AL, Barros MC, dos Santos AM. Functional capacity during exercise in very-low-birth-weight premature children. Pediatr Pulmonol. 2014;49(1):91–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Clemm HH, Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T. Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc. 2014;11(4):537–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Edwards MO, Kotecha SJ, Lowe J, Watkins WJ, Henderson AJ, Kotecha S. Effect of preterm birth on exercise capacity: a systematic review and meta-analysis. Pediatr Pulmonol. 2015;50(3):293–301.CrossRefGoogle Scholar
  86. 86.
    Davidoff MJ, Dias T, Damus K, Russell R, Bettegowda VR, Dolan S, et al. Changes in the gestational age distribution among U.S. singleton births: impact on rates of late preterm birth, 1992 to 2002. Semin Perinatol. 2006;30(1):8–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Munson ML. Births: final data for 2002. Natl Vital Stat Rep. 2003;52(10):1–113.PubMedGoogle Scholar
  88. 88.
    Pike KC, Lucas JS. Respiratory consequences of late preterm birth. Paediatr Respir Rev. 2015;16(3):182–8.PubMedGoogle Scholar
  89. 89.
    Kotecha SJ, Dunstan FD, Kotecha S. Long term respiratory outcomes of late preterm-born infants. Semin Fetal Neonatal Med. 2012;17(2):77–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Hibbard JU, Wilkins I, Sun L, Gregory K, Haberman S, Hoffman M, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304(4):419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Teune MJ, Bakhuizen S, Gyamfi Bannerman C, Opmeer BC, van Kaam AH, van Wassenaer AG, et al. A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gyn. 2011;205(4):374. e1-9.CrossRefGoogle Scholar
  92. 92.
    Celik IH, Demirel G, Canpolat FE, Dilmen U. A common problem for neonatal intensive care units: late preterm infants, a prospective study with term controls in a large perinatal center. J Matern Fetal Neonatal Med. 2013;26(5):459–62.PubMedCrossRefGoogle Scholar
  93. 93.
    Resch B, Paes B. Are late preterm infants as susceptible to RSV infection as full term infants? Early Hum Dev. 2011;87(Suppl 1):S47–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Carbonell-Estrany X, Bont L, Doering G, Gouyon JB, Lanari M. Clinical relevance of prevention of respiratory syncytial virus lower respiratory tract infection in preterm infants born between 33 and 35 weeks gestational age. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2008;27(10):891–9.CrossRefGoogle Scholar
  95. 95.
    Colin AA, McEvoy C, Castile RG. Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics. 2010;126(1):115–28.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Meert K, Heidemann S, Abella B, Sarnaik A. Does prematurity alter the course of respiratory syncytial virus infection? Crit Care Med. 1990;18(12):1357–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Boyce TG, Mellen BG, Mitchel Jr EF, Wright PF, Griffin MR. Rates of hospitalization for respiratory syncytial virus infection among children in medicaid. J Pediatr. 2000;137(6):865–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Sampalis JS. Morbidity and mortality after RSV-associated hospitalizations among premature Canadian infants. J Pediatr. 2003;143(5 Suppl):S150–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Carbonell-Estrany X, Fullarton JR, Gooch KL, Vo PG, Figueras-Aloy J, Lanari M, et al. Effects of parental and household smoking on the risk of respiratory syncytial virus (RSV) hospitalisation in late-preterm infants and the potential impact of RSV prophylaxis. J Matern Fetal Neonatal Med. 2013;26(9):926–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Goyal NK, Fiks AG, Lorch SA. Association of late-preterm birth with asthma in young children: practice-based study. Pediatrics. 2011;128(4):e830–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kugelman A, Colin AA. Late preterm infants: near term but still in a critical developmental time period. Pediatrics. 2013;132(4):741–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Vrijlandt EJ, Kerstjens JM, Duiverman EJ, Bos AF, Reijneveld SA. Moderately preterm children have more respiratory problems during their first 5 years of life than children born full term. Am J Respir Crit Care Med. 2013;187(11):1234–40.PubMedCrossRefGoogle Scholar
  103. 103.
    Odibo IN, Bird TM, McKelvey SS, Sandlin A, Lowery C, Magann EF. Childhood respiratory morbidity after late preterm and early term delivery: a study of medicaid patients in South Carolina. Pediatr Perinat Epidemiol. 2016;30(1):67–75.CrossRefGoogle Scholar
  104. 104.
    Crump C, Winkleby MA, Sundquist J, Sundquist K. Risk of asthma in young adults who were born preterm: a Swedish national cohort study. Pediatrics. 2011;127(4):e913–20.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Todisco T, de Benedictis FM, Iannacci L, Baglioni S, Eslami A, Todisco E, et al. Mild prematurity and respiratory functions. Eur J Pediatr. 1993;152(1):55–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Kotecha SJ, Watkins WJ, Paranjothy S, Dunstan FD, Henderson AJ, Kotecha S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67(1):54–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Pediatrics/Division of NeonatologyUniversity of Miami School of Medicine, Batchelor Children’s Research InstituteMiamiUSA
  2. 2.Department of Pediatrics/Division of NeonatologyUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations