Skip to main content

The Bronchopulmonary Dysplasia Diagnosis: Definitions, Utility, Limitations

  • 751 Accesses

Part of the Respiratory Medicine book series (RM)

Abstract

The definition of bronchopulmonary dysplasia (BPD) has evolved over the past 40 years, as survival for extremely preterm infants has improved. Clinical definitions of BPD have eliminated the requirement for abnormal chest radiograph, depending only on the prescription of supplemental oxygen, and have generally transitioned from determination at 28 days of age to 36 weeks’ postmenstrual age. More detailed clinical definitions proposed a severity scale for BPD (in which infants on assisted ventilation are classified as severe BPD, regardless of receipt of supplemental oxygen). Other definitions of BPD that have been broadly adopted in observational and interventional research are based on a physiologic challenge conducted in infants on nasal cannula support or other forms of supplemental oxygen without assisted ventilation. The challenge assesses the ability of the infant to maintain a prespecified oxygen saturation with a gradual decrease and discontinuation of clinical respiratory support. Although physiologic and severity-based definitions of BPD likely provide more discrimination, validation studies of BPD with respect to outcomes defining respiratory morbidity at 1–2 years corrected age have predominantly been based on binary clinical definitions of BPD. Accuracy of prediction likely depends on patient population characteristics and the specific outcomes of interest.

Keywords

  • Benchmarking
  • Clinical trials
  • Extremely low gestational age newborn
  • Prematurity
  • Pulmonary function
  • Respiratory morbidity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48835-6_4
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48835-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)

Abbreviations

BPD:

Bronchopulmonary dysplasia

FRC:

Functional residual capacity

HHFNC:

Humidified high flow nasal cannula

References

  1. Northway WH, Rosan RC, Porter DY. Pulmonary disease following respiratory therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.

    CrossRef  PubMed  Google Scholar 

  2. Bonikos DS, Bensch KG, Northway WH, Edwards DK. Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol. 1976;7:643–66.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Taghizadeh A, Reynolds EO. Pathogenesis of bronchopulmonary dysplasia following hyaline membrane disease. Am J Pathol. 1976;82:241–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tooley WH. Epidemiology of bronchopulmonary dysplasia. J Pediatr. 1979;95(5 Pt 2):851–8.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan H, Cotton RB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987;79(1):26–30.

    CAS  PubMed  Google Scholar 

  6. Hislop AA, Wigglesworth JS, Desai R. Alveolar development in the human fetus and infant. Early Hum Dev. 1986;13:1–11.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988;82:527–32.

    CAS  PubMed  Google Scholar 

  8. Fanaroff AA, Wright LL, Stevenson DK, Shankaran S, Donovan EF, Ehrenkranz RA, et al. Very-low-birth-weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, May 1991 through December 1992. Am J Obstet Gynecol. 1995;173:1423–31.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Wright LL, Verter J, Younes N, Stevenson D, Fanaroff AA, Shankaran S, et al. Antenatal corticosteroid administration and neonatal outcome in very low birth weight infants: the NICHD Neonatal Research Network. Am J Obstet Gynecol. 1995;173:269–74.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Davis PG, Thorpe K, Roberts R, Schmidt B, Doyle LW, Kirpalani H, et al. Evaluating “old” definitions for the “new” bronchopulmonary dysplasia. J Pediatr. 2002;140:555–60.

    CrossRef  PubMed  Google Scholar 

  11. Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Jobe AH. The new BPD: an arrest of lung development. Pediatr Res. 1999;46:641–3.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Abman S. Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med. 2001;164:1755–6.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Hislop AA. Airway and blood vessel interaction during lung development. J Anat. 2002;201:325–34.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116:1353–60.

    CrossRef  PubMed  Google Scholar 

  18. The STOP-ROP Multicenter Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105(2):295–310.

    CrossRef  Google Scholar 

  19. Lagatta J, Clark R, Spitzer A. Clinical predictors and institutional variation in home oxygen use in preterm infants. J Pediatr. 2012;160:232–8.

    CrossRef  PubMed  Google Scholar 

  20. Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A. Safety, reliability and valididty of a physiological definition of bronchopulmoanry dysplasia. J Perinatol. 2003;23:451–6.

    CrossRef  PubMed  Google Scholar 

  21. Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A, et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics. 2004;114:1305–11.

    CrossRef  PubMed  Google Scholar 

  22. Benaron D, Benitz W. Maximizing the stability of oxygen delivered by nasal cannula. Arch Pediatr Adolesc Med. 1994;148:294–300.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Walsh M, Engle W, Laptook A, Kazzi SN, Buchter S, Rasmussen M, et al. Oxygen delivery through nasal cannulae to preterm infants: can practice be improved? Pediatrics. 2005;116:857–61.

    CrossRef  PubMed  Google Scholar 

  24. Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med. 2006;355(4):343–53.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD, et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev. 2012;88:509–15.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Ballard RA, Keller RL, Black DM, Ballard PL, Merrill JD, Eichenwald EC, et al. Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J Pediatr. 2016;168:23–9. e4.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–56.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Poindexter BB, Feng R, Schmidt B, Aschner JL, Ballard RA, Hamvas A, et al. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the Prematurity and Respiratory Outcomes Program. Ann Am Thorac Soc. 2015;12:1822–30.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Pryhuber GS, Maitre NL, Ballard RA, Cifelli D, Davis SD, Ellenberg JH, et al. Prematurity and Respiratory Outcomes Program (PROP): study protocol of a prospective multicenter study of respiratory outcomes of preterm infants in the United States. BMC Pediatr. 2015;15:37.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Dani C, Pratesi S, Migliori C, Bertini G. High flow nasal cannula therapy as respiratory support in the preterm infant. Pediatr Pulmonol. 2009;44:629–34.

    CrossRef  PubMed  Google Scholar 

  31. Hough JL, Shearman AD, Jardine LA, Davies MW. Humidified high flow nasal cannulae: current practice in Australasian nurseries, a survey. J Paediatr Child Health. 2012;48:106–13.

    CrossRef  PubMed  Google Scholar 

  32. Ojha S, Gridley E, Dorling J. Use of heated humidified high-flow nasal cannula oxygen in neonates: a UK wide survey. Acta Paediatr. 2013;102:249–53.

    CrossRef  PubMed  Google Scholar 

  33. Lavizzari A, Veneroni C, Colnaghi M, Ciuffini F, Zannin E, Fumagalli M, et al. Respiratory mechanics during NCPAP and HHHFNC at equal distending pressures. Arch Dis Child Fetal Neonatal Ed. 2014;99:F315–20.

    CrossRef  PubMed  Google Scholar 

  34. Eichenwald EC, Aina A, Stark AR. Apnea frequently persists beyond term gestation in infants delivered at 24 to 28 weeks. Pediatrics. 1997;100(3 Pt 1):354–9.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Hunt CE, Corwin MJ, Weese-Mayer DE, Ward SL, Ramanathan R, Lister G, et al. Longitudinal assessment of hemoglobin oxygen saturation in preterm and term infants in the first six months of life. J Pediatr. 2011;159:377–83. e1.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Naulaers G, Daniels H, Allegaert K, Rayyan M, Debeer A, Devlieger H. Cardiorespiratory events recorded on home monitors: the effect of prematurity on later serious events. Acta Paediatr. 2007;96:195–8.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Ramanathan R, Corwin MJ, Hunt CE, Lister G, Tinsley LR, Baird T, et al. Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA. 2001;285:2199–207.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Coste F, Ferkol T, Hamvas A, Cleveland C, Linneman L, Hoffman J, et al. Ventilatory control and supplemental oxygen in premature infants with apparent chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2015;100:F233–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Tourneux P, Léké A, Kongolo G, Cardot V, Dégrugilliers L, Chardon K, et al. Relationship between functional residual capacity and oxygen desaturation during short central apneic events during sleep in “late preterm” infants. Pediatr Res. 2008;64:171–6.

    CrossRef  PubMed  Google Scholar 

  40. Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics. 2001;107:1081–3.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Ballard RA. Inhaled nitric oxide in preterm infants – correction. N Engl J Med. 2007;357:1444–5.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Greenough A, Limb E, Marston L, Marlow N, Calvert S, Peacock J. Risk factors for respiratory morbidity in infancy after very premature birth. Arch Dis Child Fetal Neonatal Ed. 2005;90:F320–F3.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Hennessy EM, Bracewell MA, Wood N, Wolke D, Costeloe K, Gibson A, et al. Respiratory health in pre-school and school age children following extremely preterm birth. Arch Dis Child. 2008;93:1037–43.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Stevens TP, Finer NN, Carlo WA, Szilagyi PG, Phelps DL, Walsh MC, et al. Respiratory outcomes of the surfactant positive pressure and oximetry randomized trial (SUPPORT). J Pediatr. 2014;165:240–9. e4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Parad RB, Davis JM, Lo J, Thomas M, Marlow N, Calvert S, et al. Prediction of respiratory outcome in extremely low gestational age infants. Neonatology. 2015;107:241–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Kaempf JW, Campbell B, Brown A, Bowers K, Gallegos R, Goldsmith JP. PCO2 and room air saturation values in premature infants at risk for bronchopulmonary dysplasia. J Perinatol. 2008;28:48–54.

    CAS  CrossRef  PubMed  Google Scholar 

  47. Islam JY, Keller RL, Aschner JL, Hartert TV, Moore PE. Understanding the short and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192(2):134–56.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46:369–75.

    CrossRef  PubMed  Google Scholar 

  49. Fortuna M, Carraro S, Temporin E, Berardi M, Zanconato S, Salvadori S, et al. Mid-childhood lung function in a cohort of children with “new bronchopulmonary dysplasia”. Pediatr Pulmonol. 2016;51(10):1057–64.

    CrossRef  PubMed  Google Scholar 

  50. Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181:1093–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Chang DV, Assaf SJ, Tiller CJ, Kisling JA, Tepper RS. Membrane and Capillary Components of Lung Diffusion in Infants with Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. 2016;193:767–71.

    CAS  CrossRef  PubMed  Google Scholar 

  52. Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel D, et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 2009;123:1132–41.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Cheung PY, Barrington KJ, Finer NN, Robertson CM. Early childhood neurodevelopment in very low birth weight infants with predischarge apnea. Pediatr Pulmonol. 1999;27:14–20.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Bonifacio SL, Glass HC, Chau V, Berman JI, Xu D, Brant R, et al. Extreme premature birth is not associated with impaired development of brain microstructure. J Pediatr. 2010;157:726–32. e1.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics. 2014;134:e444–53.

    CrossRef  PubMed  Google Scholar 

  56. Natarajan G, Johnson YR, Brozanski B, Farrow KN, Zaniletti I, Padula MA, et al. Postnatal weight gain in preterm infants with severe bronchopulmonary dysplasia. Am J Perinatol. 2014;31:223–30.

    PubMed  Google Scholar 

  57. Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289:1124–9.

    CrossRef  PubMed  Google Scholar 

  58. Ambalavanan N, Carlo WA, Tyson JE, Langer JC, Walsh MC, Parikh NA, et al. Outcome trajectories in extremely preterm infants. Pediatrics. 2012;130:e115–25.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Schmidt B, Roberts RS, Davis PG, Doyle LW, Asztalos EV, Opie G, et al. rediction of late death or disability at age 5 years using a count of 3 neonatal morbidities in very low birth weight infants. J Pediatr. 2015;167:982–6. e2.

    CrossRef  PubMed  Google Scholar 

  60. Majnemer A, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates AL. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev Med Child Neurol. 2000;42:53–60.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Van Marter LJ, Kuban KC, Allred E, Bose C, Dammann O, O’Shea M, et al. Does bronchopulmonary dysplasia contribute to the occurrence of cerebral palsy among infants born before 28 weeks of gestation? Arch Dis Child Fetal Neonatal Ed. 2011;96:F20–9.

    CrossRef  PubMed  Google Scholar 

  62. Laughon M, O’Shea MT, Allred EN, Bose C, Kuban K, Van Marter LJ, et al. Chronic lung disease and developmental delay at 2 years of age in children born before 28 weeks’ gestation. Pediatrics. 2009;124:637–48.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  63. Ambalavanan N, Walsh M, Bobashev G, Das A, Levine B, Carlo WA, et al. Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants. Pediatrics. 2011;127:e106–16.

    CrossRef  PubMed  Google Scholar 

  64. Beam KS, Aliaga S, Ahlfeld SK, Cohen-Wolkowiez M, Smith PB, Laughon MM. A systematic review of randomized controlled trials for the prevention of bronchopulmonary dysplasia in infants. J Perinatol. 2014;34:705–10.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Walsh M, Laptook A, Kazzi SN, Engle WA, Yao Q, Rasmussen M, et al. A cluster-randomized trial of benchmarking and multimodal quality improvement to improve rates of survival free of bronchopulmonary dysplasia for infants with birth weights of less than 1250 grams. Pediatrics. 2007;119:876–90.

    CrossRef  PubMed  Google Scholar 

  66. Lapcharoensap W, Gage SC, Kan P, Profit J, Shaw GM, Gould JB, et al. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort. JAMA Pediatr. 2015;169:e143676.

    CrossRef  PubMed  Google Scholar 

  67. Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M, et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001596.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Hibbs AM, Walsh MC, Martin RJ, Truog WE, Lorch SA, Alessandrini E, et al. One-year respiratory outcomes of preterm infants enrolled in the Nitric Oxide (to prevent) Chronic Lung Disease trial. J Pediatr. 2008;153(4):525–9.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Gage S, Kan P, Oehlert J, Gould JB, Stevenson DK, Shaw GM, et al. Determinants of chronic lung disease severity in the first year of life; a population based study. Pediatr Pulmonol. 2015;50:878–88.

    CrossRef  PubMed  Google Scholar 

  70. Hoo AF, Gupta A, Lum S, Costeloe KL, Huertas-Ceballos A, Marlow N, et al. Impact of ethnicity and extreme prematurity on infant pulmonary function. Pediatr Pulmonol. 2014;49:679–87.

    CrossRef  PubMed  Google Scholar 

  71. Doyle LW, Cheong JL, Burnett A, Roberts G, Lee KJ, Anderson PJ, et al. Biological and social influences on outcomes of extreme-preterm/low-birth weight adolescents. Pediatrics. 2015;136:e1513–20.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta L. Keller MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Keller, R.L. (2017). The Bronchopulmonary Dysplasia Diagnosis: Definitions, Utility, Limitations. In: Hibbs, A., Muhlebach , M. (eds) Respiratory Outcomes in Preterm Infants. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-48835-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48835-6_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-48834-9

  • Online ISBN: 978-3-319-48835-6

  • eBook Packages: MedicineMedicine (R0)