The Bronchopulmonary Dysplasia Diagnosis: Definitions, Utility, Limitations

  • Roberta L. KellerEmail author
Part of the Respiratory Medicine book series (RM)


The definition of bronchopulmonary dysplasia (BPD) has evolved over the past 40 years, as survival for extremely preterm infants has improved. Clinical definitions of BPD have eliminated the requirement for abnormal chest radiograph, depending only on the prescription of supplemental oxygen, and have generally transitioned from determination at 28 days of age to 36 weeks’ postmenstrual age. More detailed clinical definitions proposed a severity scale for BPD (in which infants on assisted ventilation are classified as severe BPD, regardless of receipt of supplemental oxygen). Other definitions of BPD that have been broadly adopted in observational and interventional research are based on a physiologic challenge conducted in infants on nasal cannula support or other forms of supplemental oxygen without assisted ventilation. The challenge assesses the ability of the infant to maintain a prespecified oxygen saturation with a gradual decrease and discontinuation of clinical respiratory support. Although physiologic and severity-based definitions of BPD likely provide more discrimination, validation studies of BPD with respect to outcomes defining respiratory morbidity at 1–2 years corrected age have predominantly been based on binary clinical definitions of BPD. Accuracy of prediction likely depends on patient population characteristics and the specific outcomes of interest.


Benchmarking Clinical trials Extremely low gestational age newborn Prematurity Pulmonary function Respiratory morbidity 



Bronchopulmonary dysplasia


Functional residual capacity


Humidified high flow nasal cannula


  1. 1.
    Northway WH, Rosan RC, Porter DY. Pulmonary disease following respiratory therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonikos DS, Bensch KG, Northway WH, Edwards DK. Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol. 1976;7:643–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Taghizadeh A, Reynolds EO. Pathogenesis of bronchopulmonary dysplasia following hyaline membrane disease. Am J Pathol. 1976;82:241–64.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Tooley WH. Epidemiology of bronchopulmonary dysplasia. J Pediatr. 1979;95(5 Pt 2):851–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Avery ME, Tooley WH, Keller JB, Hurd SS, Bryan H, Cotton RB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987;79(1):26–30.PubMedGoogle Scholar
  6. 6.
    Hislop AA, Wigglesworth JS, Desai R. Alveolar development in the human fetus and infant. Early Hum Dev. 1986;13:1–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988;82:527–32.PubMedGoogle Scholar
  8. 8.
    Fanaroff AA, Wright LL, Stevenson DK, Shankaran S, Donovan EF, Ehrenkranz RA, et al. Very-low-birth-weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, May 1991 through December 1992. Am J Obstet Gynecol. 1995;173:1423–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Wright LL, Verter J, Younes N, Stevenson D, Fanaroff AA, Shankaran S, et al. Antenatal corticosteroid administration and neonatal outcome in very low birth weight infants: the NICHD Neonatal Research Network. Am J Obstet Gynecol. 1995;173:269–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Davis PG, Thorpe K, Roberts R, Schmidt B, Doyle LW, Kirpalani H, et al. Evaluating “old” definitions for the “new” bronchopulmonary dysplasia. J Pediatr. 2002;140:555–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Jobe AH. The new BPD: an arrest of lung development. Pediatr Res. 1999;46:641–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Abman S. Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med. 2001;164:1755–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Hislop AA. Airway and blood vessel interaction during lung development. J Anat. 2002;201:325–34.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116:1353–60.CrossRefPubMedGoogle Scholar
  18. 18.
    The STOP-ROP Multicenter Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105(2):295–310.CrossRefGoogle Scholar
  19. 19.
    Lagatta J, Clark R, Spitzer A. Clinical predictors and institutional variation in home oxygen use in preterm infants. J Pediatr. 2012;160:232–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A. Safety, reliability and valididty of a physiological definition of bronchopulmoanry dysplasia. J Perinatol. 2003;23:451–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A, et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics. 2004;114:1305–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Benaron D, Benitz W. Maximizing the stability of oxygen delivered by nasal cannula. Arch Pediatr Adolesc Med. 1994;148:294–300.CrossRefPubMedGoogle Scholar
  23. 23.
    Walsh M, Engle W, Laptook A, Kazzi SN, Buchter S, Rasmussen M, et al. Oxygen delivery through nasal cannulae to preterm infants: can practice be improved? Pediatrics. 2005;116:857–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med. 2006;355(4):343–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD, et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev. 2012;88:509–15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ballard RA, Keller RL, Black DM, Ballard PL, Merrill JD, Eichenwald EC, et al. Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J Pediatr. 2016;168:23–9. e4.CrossRefPubMedGoogle Scholar
  27. 27.
    Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Poindexter BB, Feng R, Schmidt B, Aschner JL, Ballard RA, Hamvas A, et al. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the Prematurity and Respiratory Outcomes Program. Ann Am Thorac Soc. 2015;12:1822–30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pryhuber GS, Maitre NL, Ballard RA, Cifelli D, Davis SD, Ellenberg JH, et al. Prematurity and Respiratory Outcomes Program (PROP): study protocol of a prospective multicenter study of respiratory outcomes of preterm infants in the United States. BMC Pediatr. 2015;15:37.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dani C, Pratesi S, Migliori C, Bertini G. High flow nasal cannula therapy as respiratory support in the preterm infant. Pediatr Pulmonol. 2009;44:629–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Hough JL, Shearman AD, Jardine LA, Davies MW. Humidified high flow nasal cannulae: current practice in Australasian nurseries, a survey. J Paediatr Child Health. 2012;48:106–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Ojha S, Gridley E, Dorling J. Use of heated humidified high-flow nasal cannula oxygen in neonates: a UK wide survey. Acta Paediatr. 2013;102:249–53.CrossRefPubMedGoogle Scholar
  33. 33.
    Lavizzari A, Veneroni C, Colnaghi M, Ciuffini F, Zannin E, Fumagalli M, et al. Respiratory mechanics during NCPAP and HHHFNC at equal distending pressures. Arch Dis Child Fetal Neonatal Ed. 2014;99:F315–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Eichenwald EC, Aina A, Stark AR. Apnea frequently persists beyond term gestation in infants delivered at 24 to 28 weeks. Pediatrics. 1997;100(3 Pt 1):354–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Hunt CE, Corwin MJ, Weese-Mayer DE, Ward SL, Ramanathan R, Lister G, et al. Longitudinal assessment of hemoglobin oxygen saturation in preterm and term infants in the first six months of life. J Pediatr. 2011;159:377–83. e1.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Naulaers G, Daniels H, Allegaert K, Rayyan M, Debeer A, Devlieger H. Cardiorespiratory events recorded on home monitors: the effect of prematurity on later serious events. Acta Paediatr. 2007;96:195–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Ramanathan R, Corwin MJ, Hunt CE, Lister G, Tinsley LR, Baird T, et al. Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA. 2001;285:2199–207.CrossRefPubMedGoogle Scholar
  38. 38.
    Coste F, Ferkol T, Hamvas A, Cleveland C, Linneman L, Hoffman J, et al. Ventilatory control and supplemental oxygen in premature infants with apparent chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2015;100:F233–7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tourneux P, Léké A, Kongolo G, Cardot V, Dégrugilliers L, Chardon K, et al. Relationship between functional residual capacity and oxygen desaturation during short central apneic events during sleep in “late preterm” infants. Pediatr Res. 2008;64:171–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics. 2001;107:1081–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Ballard RA. Inhaled nitric oxide in preterm infants – correction. N Engl J Med. 2007;357:1444–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Greenough A, Limb E, Marston L, Marlow N, Calvert S, Peacock J. Risk factors for respiratory morbidity in infancy after very premature birth. Arch Dis Child Fetal Neonatal Ed. 2005;90:F320–F3.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hennessy EM, Bracewell MA, Wood N, Wolke D, Costeloe K, Gibson A, et al. Respiratory health in pre-school and school age children following extremely preterm birth. Arch Dis Child. 2008;93:1037–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Stevens TP, Finer NN, Carlo WA, Szilagyi PG, Phelps DL, Walsh MC, et al. Respiratory outcomes of the surfactant positive pressure and oximetry randomized trial (SUPPORT). J Pediatr. 2014;165:240–9. e4.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Parad RB, Davis JM, Lo J, Thomas M, Marlow N, Calvert S, et al. Prediction of respiratory outcome in extremely low gestational age infants. Neonatology. 2015;107:241–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kaempf JW, Campbell B, Brown A, Bowers K, Gallegos R, Goldsmith JP. PCO2 and room air saturation values in premature infants at risk for bronchopulmonary dysplasia. J Perinatol. 2008;28:48–54.CrossRefPubMedGoogle Scholar
  47. 47.
    Islam JY, Keller RL, Aschner JL, Hartert TV, Moore PE. Understanding the short and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2015;192(2):134–56.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46:369–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Fortuna M, Carraro S, Temporin E, Berardi M, Zanconato S, Salvadori S, et al. Mid-childhood lung function in a cohort of children with “new bronchopulmonary dysplasia”. Pediatr Pulmonol. 2016;51(10):1057–64.CrossRefPubMedGoogle Scholar
  50. 50.
    Balinotti JE, Chakr VC, Tiller C, Kimmel R, Coates C, Kisling J, et al. Growth of lung parenchyma in infants and toddlers with chronic lung disease of infancy. Am J Respir Crit Care Med. 2010;181:1093–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chang DV, Assaf SJ, Tiller CJ, Kisling JA, Tepper RS. Membrane and Capillary Components of Lung Diffusion in Infants with Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. 2016;193:767–71.CrossRefPubMedGoogle Scholar
  52. 52.
    Ambalavanan N, Carlo WA, D’Angio CT, McDonald SA, Das A, Schendel D, et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 2009;123:1132–41.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cheung PY, Barrington KJ, Finer NN, Robertson CM. Early childhood neurodevelopment in very low birth weight infants with predischarge apnea. Pediatr Pulmonol. 1999;27:14–20.CrossRefPubMedGoogle Scholar
  54. 54.
    Bonifacio SL, Glass HC, Chau V, Berman JI, Xu D, Brant R, et al. Extreme premature birth is not associated with impaired development of brain microstructure. J Pediatr. 2010;157:726–32. e1.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics. 2014;134:e444–53.CrossRefPubMedGoogle Scholar
  56. 56.
    Natarajan G, Johnson YR, Brozanski B, Farrow KN, Zaniletti I, Padula MA, et al. Postnatal weight gain in preterm infants with severe bronchopulmonary dysplasia. Am J Perinatol. 2014;31:223–30.PubMedGoogle Scholar
  57. 57.
    Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289:1124–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Ambalavanan N, Carlo WA, Tyson JE, Langer JC, Walsh MC, Parikh NA, et al. Outcome trajectories in extremely preterm infants. Pediatrics. 2012;130:e115–25.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schmidt B, Roberts RS, Davis PG, Doyle LW, Asztalos EV, Opie G, et al. rediction of late death or disability at age 5 years using a count of 3 neonatal morbidities in very low birth weight infants. J Pediatr. 2015;167:982–6. e2.CrossRefPubMedGoogle Scholar
  60. 60.
    Majnemer A, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates AL. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev Med Child Neurol. 2000;42:53–60.CrossRefPubMedGoogle Scholar
  61. 61.
    Van Marter LJ, Kuban KC, Allred E, Bose C, Dammann O, O’Shea M, et al. Does bronchopulmonary dysplasia contribute to the occurrence of cerebral palsy among infants born before 28 weeks of gestation? Arch Dis Child Fetal Neonatal Ed. 2011;96:F20–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Laughon M, O’Shea MT, Allred EN, Bose C, Kuban K, Van Marter LJ, et al. Chronic lung disease and developmental delay at 2 years of age in children born before 28 weeks’ gestation. Pediatrics. 2009;124:637–48.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ambalavanan N, Walsh M, Bobashev G, Das A, Levine B, Carlo WA, et al. Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants. Pediatrics. 2011;127:e106–16.CrossRefPubMedGoogle Scholar
  64. 64.
    Beam KS, Aliaga S, Ahlfeld SK, Cohen-Wolkowiez M, Smith PB, Laughon MM. A systematic review of randomized controlled trials for the prevention of bronchopulmonary dysplasia in infants. J Perinatol. 2014;34:705–10.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Walsh M, Laptook A, Kazzi SN, Engle WA, Yao Q, Rasmussen M, et al. A cluster-randomized trial of benchmarking and multimodal quality improvement to improve rates of survival free of bronchopulmonary dysplasia for infants with birth weights of less than 1250 grams. Pediatrics. 2007;119:876–90.CrossRefPubMedGoogle Scholar
  66. 66.
    Lapcharoensap W, Gage SC, Kan P, Profit J, Shaw GM, Gould JB, et al. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort. JAMA Pediatr. 2015;169:e143676.CrossRefPubMedGoogle Scholar
  67. 67.
    Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M, et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001596.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hibbs AM, Walsh MC, Martin RJ, Truog WE, Lorch SA, Alessandrini E, et al. One-year respiratory outcomes of preterm infants enrolled in the Nitric Oxide (to prevent) Chronic Lung Disease trial. J Pediatr. 2008;153(4):525–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gage S, Kan P, Oehlert J, Gould JB, Stevenson DK, Shaw GM, et al. Determinants of chronic lung disease severity in the first year of life; a population based study. Pediatr Pulmonol. 2015;50:878–88.CrossRefPubMedGoogle Scholar
  70. 70.
    Hoo AF, Gupta A, Lum S, Costeloe KL, Huertas-Ceballos A, Marlow N, et al. Impact of ethnicity and extreme prematurity on infant pulmonary function. Pediatr Pulmonol. 2014;49:679–87.CrossRefPubMedGoogle Scholar
  71. 71.
    Doyle LW, Cheong JL, Burnett A, Roberts G, Lee KJ, Anderson PJ, et al. Biological and social influences on outcomes of extreme-preterm/low-birth weight adolescents. Pediatrics. 2015;136:e1513–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Pediatrics/NeonatologyUCSF Benioff Children’s HospitalSan FranciscoUSA

Personalised recommendations