Advertisement

Why Do Former Preterm Infants Wheeze? Clues from the Laboratory

  • Richard J. MartinEmail author
  • Thomas M. Raffay
Chapter
  • 667 Downloads
Part of the Respiratory Medicine book series (RM)

Abstract

Increased airway reactivity is a major challenge in former preterm infants across the spectrum of gestational ages. It is, therefore, imperative that underlying mechanisms be addressed, and this is probably best done in neonatal animal models. Available evidence points to multiple anatomic and neural contributors to longer lasting airway hyperreactivity elicited by neonatal lung injury, especially hyperoxic exposure. Future studies need to address the interplay of exposure to supplemental oxygen with antenatal and postnatal inflammation as well as the pressure effects elicited by various ventilatory modes to which the immature lung and airway are exposed.

Keywords

Immature airway Hyperoxic exposure Airway smooth muscle development 

References

  1. 1.
    Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M, et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11(1):e1001596.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hack M, Schluchter M, Andreias L, Margevicius S, Taylor HG, Drotar D, et al. Change in prevalence of chronic conditions between childhood and adolescence among extremely low-birth-weight children. JAMA. 2011;306(4):394–401.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reyburn B, Martin RJ, Prakash YS, MacFarlane PM. Mechanisms of injury to the preterm lung and airway: Implications for long-term pulmonary outcome. Neonatology. 2012;101:345–52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martin RJ, Raffay TM, Faksh A, Prakash YS. Regulation of lower airway function. In: Polin RA, Abman S, Benitz W, Rowitch D, editors. Fetal & neonatal physiology. 5th ed. Philadelphia: Elsevier; 2016.Google Scholar
  6. 6.
    Sward-Comunelli SL, Mabry SM, Truog WE, Thibeault DW. Airway muscle in preterm infants: changes during development. J Pediatr. 1997;130:570–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Haxhiu-Poskurica B, Ernsberger P, Haxhiu M, Miller M, Cattarossi L, Martin RJ. Development of cholinergic innervation and muscarinic receptor subtypes in piglet trachea. Am J Phys. 1993;264:L606–14.Google Scholar
  8. 8.
    Panitch HB, Allen JL, Ryan JP, Wolfson MR, Shaffer TH. A comparison of preterm and adult airway smooth muscle mechanics. J Appl Physiol. 1989;66:1760–5.PubMedGoogle Scholar
  9. 9.
    Murphy TM, Mitchell RW, Halayko A, Roach J, Roy L, Kelly EA, et al. Effect of maturational changes in myosin content and morphometry on airway smooth muscle contraction. Am J Physiol Lung Cell Mol Physiol. 1991;260:L471–80.Google Scholar
  10. 10.
    Ramchandani R, Shen X, Elmsley CL, Ambrosius WT, Gunst SJ, Tepper RS. Differences in airway structure in immature and mature rabbits. J Appl Physiol. 2000;89:1310–6.PubMedGoogle Scholar
  11. 11.
    Colin AA, McEvoy C, Castile RG. Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics. 2010;126:115–28.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hislop AA, Mak JC, Reader JA, Barnes PJ, Haworth SG. Muscarinic receptor subtypes in the porcine lung during postnatal development. Eur J Pharmacol. 1998;359:211–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Fisher JT, Brundage KL, Anderson JW. Cardiopulmonary actions of muscarinic receptor subtypes in the newborn dog. Can J Physiol Pharmacol. 1996;74:603–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Fayon M, de la Roque ED, Berger P, Begueret H, Ousova O, Molimard M, et al. Increased relaxation of immature airways to β2-adrenoceptor agonists is related to attenuated expression of postjunctional smooth muscle muscarinic M2 receptors. J Appl Physiol. 2005;98:1526–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Mirmanesh SJ, Abbasi S, Bhutani VK. Alpha-adrenergic bronchoprovocation in neonates with bronchopulmonary dysplasia. J Pediatr. 1992;121:622–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Said SI, Rattan S. The multiple mediators of neurogenic smooth muscle relaxation. Trends Endocrinol Metab. 2004;15:189–91. Review.CrossRefPubMedGoogle Scholar
  17. 17.
    Waldron MA, Connelly BJ, Fisher JT. Nonadrenergic inhibitory innervation to the airways of the newborn cat. J Appl Physiol. 1989;66:1999–2000.Google Scholar
  18. 18.
    Colasurdo GN, Loader JE, Graves JP, Larsen GL. Maturation of nonadrenergic noncholinergic inhibitory system in normal and allergen-sensitized rabbits. Am J Physiol Lung Cell Mol Physiol. 1994;267:L739–44.Google Scholar
  19. 19.
    Tanaka DT, Grunstein MM. Maturation of neuromodulatory effect of substance P in rabbit airways. J Clin Invest. 1990;83:345–50.CrossRefGoogle Scholar
  20. 20.
    Haxhiu-Poskurica B, Haxhiu MA, Kumar GK, Miller MJ, Martin RJ. Tracheal smooth muscle responses to substance P and neurokinin A in the piglet. J Appl Physiol. 1992;72:1090–5.PubMedGoogle Scholar
  21. 21.
    Mhanna MJ, Dreshaj IA, Haxhiu MA, Martin RJ. Mechanism for substance P-induced relaxation of precontracted airway smooth muscle during development. Am J Physiol Lung Cell Mol Physiol. 1999;276:L51–6.Google Scholar
  22. 22.
    Agani FH, Kuo NT, Chang CH, Dreshaj IA, Farver CF, Krause JE, et al. Effect of hyperoxia on substance P expression and airway reactivity in the developing lung. Am J Physiol Lung Cell Mol Physiol. 1997;273(17):40–5.Google Scholar
  23. 23.
    Uyehara CFT, Pichoff BE, Sim HH, Uemura HS, Nakamura KT. Hyperoxic exposure enhances airway reactivity of newborn guinea pigs. J Appl Physiol. 1993;74:2649–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Belik J, Jankov RP, Pan J, Tanswell AK. Chronic O2 exposure enhances vascular and airway smooth muscle contraction in the newborn but not adult rat. J Appl Physiol. 2003;94:2303–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Hershenson MB, Wylam ME, Punjabi N, Umans JG, Schumacker PT, Mitchell RW, et al. Exposure of immature rats to hyperoxia increases tracheal smooth muscle stress generation in vitro. J Appl Physiol. 1994;76:743–9.PubMedGoogle Scholar
  26. 26.
    Wang H, Jafri A, Martin RJ, Nnanabu J, Farver C, Prakash YS, et al. Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. Am J Physiol Lung Cell Mol Physiol. 2014;307:L295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yi M, Masood A, Ziino A, Johnson BH, Belcastro R, Li J, et al. Inhibition of apoptosis by 60 % oxygen: a novel pathway contributing to lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2011;300:L319–29.CrossRefPubMedGoogle Scholar
  28. 28.
    Hartman WR, Smelter DF, Sathish V, Karass M, Kim S, Aravamudan B, et al. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L711–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Onugha H, MacFarlane PM, Mayer CA, Abrah A, Jafri A, Martin RJ. Airway hyperreactivity is delayed after mild neonatal hyperoxic exposure. Neonatology. 2015;108:65–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Ng G, da Silva O, Ohlsson A. Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2012;6:CD003214. doi: 10.1002/14651858.CD003214.pub2.Google Scholar
  31. 31.
    Raffay T, Kc P, Reynolds J, Di Fiore J, MacFarlane P, Martin RJ. Repeated β2-adrenergic receptor agonist therapy attenuates the response to rescue bronchodilation in a hyperoxic newborn mouse model. Neonatology. 2014;106:126–32.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    O’Reilly M, Harding R, Sozo F. Altered small airways in aged mice following neonatal exposure to hyperoxic gas. Neonatology. 2014;105(1):39–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Panitch HB, Wolfson MR, Shaffer TH. Epithelial modulation of preterm airway smooth muscle contraction. J Appl Physiol. 1993;74:1437–43.CrossRefPubMedGoogle Scholar
  34. 34.
    Iben SC, Dreshaj IA, Farver CF, Haxhiu MA, Martin RJ. Role of endogenous nitric oxide in hyperoxia-induced airway hyperreactivity in maturing rats. J Appl Physiol. 2000;89:1205–12.PubMedGoogle Scholar
  35. 35.
    Mhanna MJ, Haxhiu MA, Jaber MA, Walenga RW, Chang C-H, Liu S, et al. Hyperoxia impairs airway relaxation in immature rats via a cAMP-mediated mechanism. J Appl Physiol. 2004;96:1854–60.CrossRefPubMedGoogle Scholar
  36. 36.
    Colasurdo GN, Hemming VG, Prince GA, Gelfand AS, Loader JE, Larsen GL. Human respiratory syncytial virus produces prolonged alterations of neural control in airways of developing ferrets. Am J Respir Crit Care Med. 1998;157:1506–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Prakash YS, Pabelick CM, Martin RJ. Regulation of contractility in immature airway smooth muscle. In: Wang YS, editor. Calcium signaling in airway smooth muscle cells. Cham: Springer International Publishing; 2014. p. 333–40.CrossRefGoogle Scholar
  38. 38.
    Yao Q, Haxhiu MA, Zaidi SI, Liu S, Jafri A, Martin RJ. Hyperoxia enhances brain-derived neurotrophic factor and tyrosine kinase B receptor expression in peribronchial smooth muscle of neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2005;289:307–14.CrossRefGoogle Scholar
  39. 39.
    Prakash YS, Iyanoye A, Ay B, Mantilla CB, Pabelick CM. Neurotrophin effects on intracellular Ca2+ and force in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2006;291:L447–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Tortorolo L, Langer A, Polidori G, Vento G, Stampachiacchere B, Aloe L, et al. Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2005;172:233–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Smith PG, Dreshaj A, Chaudhuri S, Onder BM, Mhanna MJ, Martin RJ. Hyperoxic conditions inhibit airway smooth muscle myosin phosphatase in rat pups. Am J Physiol Lung Cell Mol Physiol. 2007;292:L68–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Sieck GC, Han YS, Pabelick CM, Prakash YS. Temporal aspects of excitation-contraction coupling in airway smooth muscle. J Appl Physiol. 2001;91:2266–74.PubMedGoogle Scholar
  43. 43.
    Iben SC, Haxhiu MA, Farver CF, Miller MJ, Martin RJ. Short-term mechanical ventilation increases airway reactivity in rat pups. Pediatr Res. 2006;60:136–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Tepper RS, Ramchandani R, Agay E, Zhang L, Xue Z, Liu Y, et al. Chronic strain alters the passive and contractile properties of rabbit airways. J Appl Physiol. 2005;98:1949–54.CrossRefPubMedGoogle Scholar
  45. 45.
    Smith PG, Tokui T, Ikebe M. Mechanical strain increases contractile enzyme activity in cultured airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 1995;268:L999–1005.Google Scholar
  46. 46.
    Mayer CA, Martin RJ, MacFarlane PM. Increased airway reactivity in a neonatal mouse model of continuous positive airway pressure [CPAP]. Pediatr Res. 2015;78:145–51.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Reyburn B, Di Fiore JM, Raffay T, Martin RJ, Prakash YS, Jafri A, et al. The effect of continuous positive airway pressure in a mouse model of hyperoxic neonatal lung injury. Neonatology. 2016;109:6–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Faksh A, Britt RD, Vogel ER, Kuipers I, Thompson MA, Sieck GC, et al. Effects of antenatal lipopolysaccharide and postnatal hyperoxia on airway reactivity and remodeling in a neonatal mouse model. Pediatr Res. 2015;79(3):391–400. doi: 10.1038/pr.2015.232.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Köroğlu OA, MacFarlane PM, Balan KV, Zenebe WJ, Jafri A, Martin RJ, et al. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology. 2014;106:235–40.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Velten M, Heyob KM, Rogers LK, Welty SE. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J Appl Physiol. 2010;108:1347–56.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Choi CW, Kim BI, Mason SN, Potts-Kant EN, Brahmajothi MV, Auten RL. Intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity in neonatal rats. Pediatr Res. 2013;1:11–8.CrossRefGoogle Scholar
  52. 52.
    Faksh A, Britt Jr RD, Vogel ER, Thompson MA, Pandya HC, Martin RJ, et al. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2015;310:L202–11.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    O’Reilly MA, Marr SH, Yee M, McGrath-Morrow SA, Lawrence BP. Neonatal hyperoxia enhances the inflammatory response in adult mice infected with influenza A virus. Am J Respir Crit Care Med. 2008;177:1103–10.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Case Western Reserve University School of MedicineClevelandUSA
  2. 2.Rainbow Babies & Children’s HospitalClevelandUSA

Personalised recommendations