Skip to main content

The Role of the Neuropilins in Tumour Angiogenesis and Tumour Progression

  • Chapter
  • First Online:
The Neuropilins: Role and Function in Health and Disease
  • 476 Accesses

Abstract

Neuropilins (NRPs) are multifunctional receptors for class 3 semaphorins, which are responsible for axon guidance during the development of the nervous system in vertebrates, and for vascular endothelial growth factors (VEGFs), essential for vascular development and angiogenesis in disease. There is now a large body of evidence that NRPs also mediate tumour angiogenesis and progression, and they have also emerged as novel therapeutic targets in cancer. Many neoplastic cell types express NRPs, and NRP1 and NRP2 upregulation is positively correlated with tumour progression and poor patient prognosis in several cancer types (Pellet-Many et al. Biochem J 411:211–226, 2008). Recently, NRPs have been shown to play novel roles in the tumour stem cell niche and in regulation of tumour immunity. This chapter focuses on the role of NRPs in tumour angiogenesis and tumour progression, focusing on the role of the NRPs as modulators of VEGF function and highlighting approaches to therapeutic targeting of NRPs in cancer.

*Denotes equal contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    Article  CAS  PubMed  Google Scholar 

  2. Appleton BA, Wu P, Maloney J, Yin J, Liang WC, Stawicki S, Mortara K, Bowman KK, Elliott JM, Desmarais W et al (2007) Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J 26:4902–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM (2001) Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 61:5736–5740

    CAS  PubMed  Google Scholar 

  4. Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, Mercurio AM (2003) Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res 63:5230–5233

    CAS  PubMed  Google Scholar 

  5. Bagnard D, Vaillant C, Khuth ST, Dufay N, Lohrum M, Puschel AW, Belin MF, Bolz J, Thomasset N (2001) Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 21:3332–3341

    CAS  PubMed  Google Scholar 

  6. Barr MP, Byrne AM, Duffy AM, Condron CM, Devocelle M, Harriott P, Bouchier-Hayes DJ, Harmey JH (2005) A peptide corresponding to the neuropilin-1-binding site on VEGF(165) induces apoptosis of neuropilin-1-expressing breast tumour cells. Br J Cancer 92:328–333

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Battaglia A, Buzzonetti A, Monego G, Peri L, Ferrandina G, Fanfani F, Scambia G, Fattorossi A (2008) Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 123:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, Sotiropoulou PA, Loges S, Lapouge G, Candi A et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478:399–403

    Article  CAS  PubMed  Google Scholar 

  9. Berge M, Bonnin P, Sulpice E, Vilar J, Allanic D, Silvestre JS, Levy BI, Tucker GC, Tobelem G, Merkulova-Rainon T (2010) Small interfering RNAs induce target-independent inhibition of tumor growth and vasculature remodeling in a mouse model of hepatocellular carcinoma. Am J Pathol 177:3192–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berrien-Elliott MM, Jackson SR, Meyer JM, Rouskey CJ, Nguyen TL, Yagita H, Greenberg PD, DiPaolo RJ, Teague RM (2013) Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T-cell tolerance. Cancer Res 73:605–616

    Article  CAS  PubMed  Google Scholar 

  11. Bouneaud C, Kourilsky P, Bousso P (2000) Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13:829–840

    Article  CAS  PubMed  Google Scholar 

  12. Bouvree K, Brunet I, Del Toro R, Gordon E, Prahst C, Cristofaro B, Mathivet T, Xu Y, Soueid J, Fortuna V et al (2012) Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res 111:437–445

    Article  CAS  PubMed  Google Scholar 

  13. Bumbaca D, Xiang H, Boswell CA, Port RE, Stainton SL, Mundo EE, Ulufatu S, Bagri A, Theil FP, Fielder PJ et al (2012) Maximizing tumour exposure to anti-neuropilin-1 antibody requires saturation of non-tumour tissue antigenic sinks in mice. Br J Pharmacol 166:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JA, Tamagnone L, Mazzone M (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24:695–709

    Article  CAS  PubMed  Google Scholar 

  15. Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13:331–342

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhary B, Khaled YS, Ammori BJ, Elkord E (2014) Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother 63:81–99

    Article  CAS  PubMed  Google Scholar 

  17. Ciardiello F, Caputo R, Damiano V, Caputo R, Troiani T, Vitagliano D, Carlomagno F, Veneziani BM, Fontanini G, Bianco AR, Tortora G (2003) Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res 9:1546–1556

    CAS  PubMed  Google Scholar 

  18. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 107:4275–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162:1951–1960

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deng T, Zhang L, Liu XJ, Xu JM, Bai YX, Wang Y, Han Y, Li YH, Ba Y (2013) Bevacizumab plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) as the second-line therapy for patients with metastatic colorectal cancer, a multicenter study. Med Oncol 30:752

    Article  PubMed  CAS  Google Scholar 

  21. Doci CL, Mikelis CM, Lionakis MS, Molinolo AA, Gutkind JS (2015) Genetic identification of SEMA3F as an antilymphangiogenic metastasis suppressor gene in head and neck squamous carcinoma. Cancer Res 75:2937–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drevs J, Hofmann I, Hugenschmidt H, Wittig C, Madjar H, Muller M, Wood J, Martiny-Baron G, Unger C, Marme D (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 60:4819–4824

    CAS  PubMed  Google Scholar 

  23. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  24. Duong T, Koopman P, Francois M (2012) Tumor lymphangiogenesis as a potential therapeutic target. J Oncol 2012:204946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. E XQ, Meng HX, Cao Y, Zhang SQ, Bi ZG, Yamakawa M (2012) Distribution of regulatory T cells and interaction with dendritic cells in the synovium of rheumatoid arthritis. Scand J Rheumatol 41:413–420

    Article  CAS  PubMed  Google Scholar 

  26. Ellis LM (2006) The role of neuropilins in cancer. Mol Cancer Ther 5:1099–1107

    Article  CAS  PubMed  Google Scholar 

  27. Evans IM, Yamaji M, Britton G, Pellet-Many C, Lockie C, Zachary IC, Frankel P (2011) Neuropilin-1 signaling through p130Cas tyrosine phosphorylation is essential for growth factor-dependent migration of glioma and endothelial cells. Mol Cell Biol 31:1174–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fantin A, Herzog B, Mahmoud M, Yamaji M, Plein A, Denti L, Ruhrberg C, Zachary I (2014) Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fantin A, Lampropoulou A, Gestri G, Raimondi C, Senatore V, Zachary I, Ruhrberg C (2015) NRP1 Regulates CDC42 activation to promote filopodia formation in endothelial tip cells. Cell Rep 11:1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  31. Frankel P, Pellet-Many C, Lehtolainen P, D’Abaco GM, Tickner ML, Cheng L, Zachary IC (2008) Chondroitin sulphate-modified neuropilin 1 is expressed in human tumour cells and modulates 3D invasion in the U87MG human glioblastoma cell line through a p130Cas-mediated pathway. EMBO Rep 9:983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gelfand MV, Hagan N, Tata A, Oh WJ, Lacoste B, Kang KT, Kopycinska J, Bischoff J, Wang JH, Gu C (2014) Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. eLife 3:e03720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ, Neufeld G (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271:5519–5523

    Article  CAS  PubMed  Google Scholar 

  34. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275:18040–18045

    Article  CAS  PubMed  Google Scholar 

  35. Grandclement C, Borg C (2011) Neuropilins: a new target for cancer therapy. Cancers (Basel) 3:1899–1928

    Article  CAS  Google Scholar 

  36. Gray MJ, Wey JS, Belcheva A, McCarty MF, Trevino JG, Evans DB, Ellis LM, Gallick GE (2005) Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Res 65:3664–3670

    Article  CAS  PubMed  Google Scholar 

  37. Graziani G, Lacal PM (2015) Neuropilin-1 as therapeutic target for malignant melanoma. Front Oncol 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grun D, Adhikary G, Eckert RL (2016) VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors. Oncogene 35(33):4379–4387

    Article  CAS  PubMed  Google Scholar 

  39. Guttmann-Raviv N, Kessler O, Shraga-Heled N, Lange T, Herzog Y, Neufeld G (2006) The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 231:1–11

    Article  CAS  PubMed  Google Scholar 

  40. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    Article  CAS  PubMed  Google Scholar 

  41. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J et al (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hansel DE, Wilentz RE, Yeo CJ, Schulick RD, Montgomery E, Maitra A (2004) Expression of neuropilin-1 in high-grade dysplasia, invasive cancer, and metastases of the human gastrointestinal tract. Am J Surg Pathol 28:347–356

    Article  PubMed  Google Scholar 

  43. Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, Albert J, Sparwasser T, Sakaguchi S, Westendorf AM et al (2012) Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med 209:2001–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Article  CAS  PubMed  Google Scholar 

  47. Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC, Wu MH, Yang SC, Pan SH, Shih JY et al (2007) Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 13:4759–4768

    Article  CAS  PubMed  Google Scholar 

  48. Ishii H, Chikamatsu K, Sakakura K, Miyata M, Furuya N, Masuyama K (2010) Primary tumor induces sentinel lymph node lymphangiogenesis in oral squamous cell carcinoma. Oral Oncol 46:373–378

    Article  CAS  PubMed  Google Scholar 

  49. Jackson SR, Berrien-Elliott M, Yuan J, Hsueh EC, Teague RM (2014) Neuropilin-1 expression is induced on tolerant self-reactive CD8+ T cells but is dispensable for the tolerant phenotype. PLoS One 9:e110707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  51. Jarvis A, Allerston CK, Jia H, Herzog B, Garza-Garcia A, Winfield N, Ellard K, Aqil R, Lynch R, Chapman C et al (2010) Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J Med Chem 53:2215–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H, Lim S, Nakamura M, Andersson P, Wang J, Sun Y et al (2014) TNFR1 mediates TNF-alpha-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 5:4944

    Article  CAS  PubMed  Google Scholar 

  53. Jia H, Aqil R, Cheng L, Chapman C, Shaikh S, Jarvis A, Chan AW, Hartzoulakis B, Evans IM, Frolov A et al (2014) N-terminal modification of VEGF-A C terminus-derived peptides delineates structural features involved in neuropilin-1 binding and functional activity. Chembiochem 15:1161–1170

    Article  CAS  PubMed  Google Scholar 

  54. Jia H, Bagherzadeh A, Hartzoulakis B, Jarvis A, Lohr M, Shaikh S, Aqil R, Cheng L, Tickner M, Esposito D et al (2006) Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. J Biol Chem 281:13493–13502

    Article  CAS  PubMed  Google Scholar 

  55. Jia H, Cheng L, Tickner M, Bagherzadeh A, Selwood D, Zachary I (2010) Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. Br J Cancer 102:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:1751

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21:60–65

    Article  CAS  PubMed  Google Scholar 

  58. Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC, Ardipradja K, Zhang YF, Williams SP, Farnsworth RH, Chai MG et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21:181–195

    Article  CAS  PubMed  Google Scholar 

  59. Karpanen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, Tamagnone L, Alitalo K (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J : Off Publication of the Federation of Am Soc Exp Biol 20:1462–1472

    Article  CAS  Google Scholar 

  60. Kawakami T, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Abe Y, Osamura Y, Inoue H, Ueyama Y, Nakamura M (2002) Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer 95:2196–2201

    Article  CAS  PubMed  Google Scholar 

  61. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183

    Article  CAS  PubMed  Google Scholar 

  62. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    Article  CAS  PubMed  Google Scholar 

  63. Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105:1–8

    Article  CAS  PubMed  Google Scholar 

  64. Latil A, Bieche I, Pesche S, Valeri A, Fournier G, Cussenot O, Lidereau R (2000) VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 89:167–171

    Article  CAS  PubMed  Google Scholar 

  65. Leong SP, Cady B, Jablons DM, Garcia-Aguilar J, Reintgen D, Jakub J, Pendas S, Duhaime L, Cassell R, Gardner M et al (2006) Clinical patterns of metastasis. Cancer Metastasis Rev 25:221–232

    Article  PubMed  Google Scholar 

  66. Liersch R, Hirakawa S, Berdel WE, Mesters RM, Detmar M (2012) Induced lymphatic sinus hyperplasia in sentinel lymph nodes by VEGF-C as the earliest premetastatic indicator. Int J Oncol 41:2073–2078

    PubMed  PubMed Central  Google Scholar 

  67. Lu L, Zhang L, Xiao Z, Lu S, Yang R, Han ZC (2008) Neuropilin-1 in acute myeloid leukemia: expression and role in proliferation and migration of leukemia cells. Leuk Lymphoma 49:331–338

    Article  CAS  PubMed  Google Scholar 

  68. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendes-da-Cruz DA, Brignier AC, Asnafi V, Baleydier F, Messias CV, Lepelletier Y, Bedjaoui N, Renand A, Smaniotto S, Canioni D et al (2014) Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. PLoS One 9:e103405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M (2000) Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J : Off publication Federation of Am Soc Exp Biol 14:2532–2539

    Article  CAS  Google Scholar 

  71. Milpied P, Massot B, Renand A, Diem S, Herbelin A, Leite-de-Moraes M, Rubio MT, Hermine O (2011) IL-17-producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression. Blood 118:2993–3002

    Article  CAS  PubMed  Google Scholar 

  72. Milpied P, Renand A, Bruneau J, Mendes-da-Cruz DA, Jacquelin S, Asnafi V, Rubio MT, MacIntyre E, Lepelletier Y, Hermine O (2009) Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur J Immunol 39:1466–1471

    Article  CAS  PubMed  Google Scholar 

  73. Miyauchi JT, Chen D, Choi M, Nissen JC, Shroyer KR, Djordevic S, Zachary IC, Selwood D, Tsirka SE (2016) Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget 7:9801–9814

    PubMed  PubMed Central  Google Scholar 

  74. Mumblat Y, Kessler O, Ilan N, Neufeld G (2015) Full-length semaphorin-3C is an inhibitor of tumor lymphangiogenesis and metastasis. Cancer Res 75:2177–2186

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura F, Goshima Y (2002) Structural and functional relation of neuropilins. Adv Exp Med Biol 515:55–69

    Article  CAS  PubMed  Google Scholar 

  76. Neufeld G, Cohen T, Gitay-Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S, Levi BZ (1996) Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev 15:153–158

    Article  CAS  PubMed  Google Scholar 

  77. Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11:1000–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ochsenbein AM, Karaman S, Jurisic G, Detmar M (2014) The role of neuropilin-1/semaphorin 3A signaling in lymphatic vessel development and maturation. Adv Anat Embryol Cell Biol 214:143–152

    Article  PubMed  Google Scholar 

  79. Ou JJ, Wei X, Peng Y, Zha L, Zhou RB, Shi H, Zhou Q, Liang HJ (2015) Neuropilin-2 mediates lymphangiogenesis of colorectal carcinoma via a VEGFC/VEGFR3 independent signaling. Cancer Lett 358:200–209

    Article  CAS  PubMed  Google Scholar 

  80. Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N, Tong RK, Kowalski J, Yee SF, Pacheco G et al (2007a) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11:53–67

    Article  CAS  PubMed  Google Scholar 

  81. Pan Q, Chathery Y, Wu Y, Rathore N, Tong RK, Peale F, Bagri A, Tessier-Lavigne M, Koch AW, Watts RJ (2007b) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056

    Article  CAS  PubMed  Google Scholar 

  82. Parikh AA, Fan F, Liu WB, Ahmad SA, Stoeltzing O, Reinmuth N, Bielenberg D, Bucana CD, Klagsbrun M, Ellis LM (2004) Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol 164:2139–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Patnaik A, LoRusso PM, Messersmith WA, Papadopoulos KP, Gore L, Beeram M, Ramakrishnan V, Kim AH, Beyer JC, Mason Shih L et al (2014) A Phase Ib study evaluating MNRP1685A, a fully human anti-NRP1 monoclonal antibody, in combination with bevacizumab and paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 73:951–960

    Article  CAS  PubMed  Google Scholar 

  84. Pellet-Many C, Frankel P, Jia H, Zachary I (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226

    Article  CAS  PubMed  Google Scholar 

  85. Piechnik A, Dmoszynska A, Omiotek M, Mlak R, Kowal M, Stilgenbauer S, Bullinger L, Giannopoulos K (2013) The VEGF receptor, neuropilin-1, represents a promising novel target for chronic lymphocytic leukemia patients. Int J Cancer 133:1489–1496

    Article  CAS  PubMed  Google Scholar 

  86. Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G (1997) VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 272:7151–7158

    Article  CAS  PubMed  Google Scholar 

  87. Prud’homme GJ, Glinka Y (2012) Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 3:921–939

    Article  PubMed  PubMed Central  Google Scholar 

  88. Raskopf E, Vogt A, Standop J, Sauerbruch T, Schmitz V (2010) Inhibition of neuropilin-1 by RNA-interference and its angiostatic potential in the treatment of hepatocellular carcinoma. Z Gastroenterol 48:21–27

    Article  CAS  PubMed  Google Scholar 

  89. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  90. Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85:9–18 ; quiz 18, 21

    Article  CAS  PubMed  Google Scholar 

  91. Rosenberg SA (1999) A new era of cancer immunotherapy: converting theory to performance. CA Cancer J Clin 49(70–73):65

    Google Scholar 

  92. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:816460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seddon AN, Cuellar S, Haaf CM (2014) The life, death, and attempted rebirth of bevacizumab in breast cancer. J Oncol Pharm Pract 20:433–444

    Article  PubMed  CAS  Google Scholar 

  95. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  CAS  PubMed  Google Scholar 

  96. Shintani Y, Takashima S, Asano Y, Kato H, Liao Y, Yamazaki S, Tsukamoto O, Seguchi O, Yamamoto H, Fukushima T et al (2006) Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. EMBO J 25:3045–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  CAS  PubMed  Google Scholar 

  98. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    Article  CAS  PubMed  Google Scholar 

  99. Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, Crepin M, Perret GY (2006) Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 79:2370–2381

    Article  CAS  PubMed  Google Scholar 

  100. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, Blaskovich MA, Baldini L, Coppola D, Hamilton AD, Sebti SM (2005) Inhibiting angiogenesis and tumorigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene 24:4701–4709

    Article  CAS  PubMed  Google Scholar 

  103. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563

    Article  CAS  PubMed  Google Scholar 

  104. Tammela T, He Y, Lyytikka J, Jeltsch M, Markkanen J, Pajusola K, Yla-Herttuala S, Alitalo K (2007) Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res 100:1468–1475

    Article  CAS  PubMed  Google Scholar 

  105. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci U S A 106:16157–16162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Teesalu T, Sugahara KN, Ruoslahti E (2013) Tumor-penetrating peptides. Front Oncol 3:216

    Article  PubMed  PubMed Central  Google Scholar 

  107. Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tobler NE, Detmar M (2006) Tumor and lymph node lymphangiogenesis--impact on cancer metastasis. J Leukoc Biol 80:691–696

    Google Scholar 

  109. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Weekes CD, Beeram M, Tolcher AW, Papadopoulos KP, Gore L, Hegde P, Xin Y, Yu R, Shih LM, Xiang H et al (2014) A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Invest New Drugs 32:653–660

    Article  CAS  PubMed  Google Scholar 

  111. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27:670–684

    Article  CAS  PubMed  Google Scholar 

  112. Whitaker GB, Limberg BJ, Rosenbaum JS (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276:25520–25531

    Article  CAS  PubMed  Google Scholar 

  113. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wissmann C, Detmar M (2006) Pathways targeting tumor lymphangiogenesis. Clin Cancer Res 12:6865–6868

    Article  CAS  PubMed  Google Scholar 

  115. Wu YY, Chen YL, Jao YC, Hsieh IS, Chang KC, Hong TM (2014) miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1. Angiogenesis 17:247–260

    Article  CAS  PubMed  Google Scholar 

  116. Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivee B, Del Toro R, Suchting S, Medvinsky A et al (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188:115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yadav M, Stephan S, Bluestone JA (2013) Peripherally induced tregs – role in immune homeostasis and autoimmunity. Front Immunol 4:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoshimatsu Y, Miyazaki H, Watabe T (2016) Roles of signaling and transcriptional networks in pathological lymphangiogenesis. Adv Drug Deliv Rev 99:161–171

    Article  CAS  PubMed  Google Scholar 

  119. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    CAS  PubMed  Google Scholar 

  120. Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568–581

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, He X, Liu Y, Ye Y, Zhang H, He P, Zhang Q, Dong L, Liu Y, Dong J (2012) microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep 27:685–694

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was supported by grants from the BBSRC (BB/K013068/1) to P.F., by British Heart Foundation (BHF) programme grant RG/06/003 to I.Z. (M.M) and by funding from Magnus Life Science (D.L. & C.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Frankel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, D., Mahmoud, M., Milagre, C., Zachary, I., Frankel, P. (2017). The Role of the Neuropilins in Tumour Angiogenesis and Tumour Progression. In: Neufeld, G., Kessler, O. (eds) The Neuropilins: Role and Function in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-48824-0_10

Download citation

Publish with us

Policies and ethics