Skip to main content

On Formulations from Thermodynamic View-Point

  • Chapter
  • First Online:
Book cover Foundations of Elastoplasticity: Subloading Surface Model
  • 981 Accesses

Abstract

Thermodynamic laws must be satisfied in all natural phenomena, while, needless to say, an elastoplastic constitutive equation is not also an exception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect. CEGB report RD/B/N 731 (or in materials at high temperature) 24:1–26

    Google Scholar 

  • Bartel T, Menzel A, Svendsen B (2011) Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J Mech Phys Solids 59:1004–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • de Souza Neto EA, Perić D, Owen DJR (2008) Computational methods for plasticity. Wiley, Chichester

    Book  Google Scholar 

  • Dettmer W, Reese S (2004) On the theoretical and numerical modelling of Armstrong-Frederic kinematic hardening in the finite strain regime. Compt Meth Appl Mech Eng 193:87–116

    Article  MATH  Google Scholar 

  • Fung YC (1965) Foundations of solid mechanics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010–1020

    Article  MATH  Google Scholar 

  • Hashiguchi K (2001) On the thermomechanical approach to the formulation of plastic constitutive equations. Soils Found 41(4):89–94

    Article  Google Scholar 

  • Haupt P (2000) Continuum mechanics and theory of materials. Springer, Wien

    Book  MATH  Google Scholar 

  • Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Quart J Mech Appl Math 1:18–28

    Google Scholar 

  • Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London

    MATH  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    Google Scholar 

  • Houlsby GT, Puzrin AM (2006) Principles of hyperelasticity: an approach to plasticity theory based on thermodynamic principles. Springer, Heidelberg

    Google Scholar 

  • Lemaitre JA (1992) A course on damage mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Lemaitre JA, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lemaitre JA, Desmoral R (2005) Engineering damage mechanics. Springer, Heidelberg

    Google Scholar 

  • Lubarda VA (2002) Elastoplasticity Theory. CRC Press, Boca Ranton, Florida

    Google Scholar 

  • Lubliner J (1984) A maximum-dissipation principle in generalized plasticity. Acta Mech 52:225–237

    Article  MathSciNet  MATH  Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Menzel A, Ekh M, Runesson K, Steinmann P (2005) A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage. Int J Plast 21:397–434

    Article  MATH  Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Springer, Dordrecht

    Book  Google Scholar 

  • Onsager L (1931) Reciprocal relations in irreversible processes. I and II. Phys Rev 37 and 38:405–426 and 2265–2279

    Google Scholar 

  • Ottosen NS, Ristinmaa M (2005) The mechanics of constitutive modeling. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Truesdell C, Noll W (1965) In: Flugge S (ed) The nonlinear field theories of mechanics, encyclopedia of physics, vol III/3. Springer, Berlin

    Google Scholar 

  • Vladimirov IN, Pietryga MP, Reese S (2008) On the modeling of nonlinear kinematic hardening at finite strains with application to springback -comparison of time integration algorithm. Int J Numer Meth Eng 75:1–28

    Article  MATH  Google Scholar 

  • Vladimirov IN, Pietryga MP, Reese S (2010) Anisotroipc finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to shear metal forming. Int J Plast 26:659–687

    Article  MATH  Google Scholar 

  • Voyiadjis GZ, Kattan PI (2006) Damage mechanics. In: Mechanical engineering, 2nd edn. CRC Press, New York

    Google Scholar 

  • Wallin M, Ristinmaa M (2005) Deformation gradient based kinematic hardening model. Int J Plast 21:2025–2050

    Article  MATH  Google Scholar 

  • Wallin M, Ristinmaa M, Ottesen NS (2003) Kinematic hardening in large strain plasticity. Eur J Mech A/Solids 22:341–356

    Article  MATH  Google Scholar 

  • Ziegler H (1983) An introduction to thermomechanics, 2nd edn. North-Holland, Amsterdam

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hashiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashiguchi, K. (2017). On Formulations from Thermodynamic View-Point. In: Foundations of Elastoplasticity: Subloading Surface Model. Springer, Cham. https://doi.org/10.1007/978-3-319-48821-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48821-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48819-6

  • Online ISBN: 978-3-319-48821-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics