Skip to main content
  • 1050 Accesses

Abstract

The crystal plasticity analysis requires the calculation of the slips in numerous slip systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand L, Kothari M (1996) A computational procedure for rate-independent crystal plasticity. J Mech Phys Solids 44:525–558

    Article  MathSciNet  MATH  Google Scholar 

  • Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23

    Google Scholar 

  • Asaro RJ, Needleman A (1985) Texture development and strain hardening in rate dependent polycrystals. Acta Metall 33:923–953

    Google Scholar 

  • Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25:309–338

    Article  MATH  Google Scholar 

  • Bassani JL, Wu TY (1991) Latent hardening in single crystals II: theory analytical characterization and predictions. Proc Royal Soc London A 435:21–41

    Article  MATH  Google Scholar 

  • Darrieulat M, Piot D (1996) A method of generalized analytical yield surfaces of crystalline materials. Int J Plast 12:575–610

    Article  MATH  Google Scholar 

  • Franciosi P, Zaoui A (1991) Crystal hardening and the issue of uniqueness. Int J Plast 7:295–311

    Article  MATH  Google Scholar 

  • Gambin W (1991) Refined analysis of elastic-plastic crystals. Int J Solids Struct 29:2013–2021

    Article  MATH  Google Scholar 

  • Gambin W (2001) Plasticity and textures. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Gambin W, Barlat F (1997) Modeling of deformation texture development based on rate independent crystal plasticity. Int J Plast 13:75–85

    Google Scholar 

  • Golub GH, Van Loan CF (2013) In: Matrix computations, 4th edn. John Hopkins University Press. Baltimore, Maryland

    Google Scholar 

  • Harder J (1999) A crystallographic model for the study of local deformation processes in polycrystals. Int J Plast 15:605–624

    Article  MATH  Google Scholar 

  • Hashiguchi K (2015) Crystal plasticity based on extended subloading surface model. In: Proceedings of 2nd science meeting of Kyushu Branch of Society of Material Science, Japan, B17

    Google Scholar 

  • Havner KS (1982) The theory of finite plastic deformation of crystalline solids. In Mechanics of solids—Rodney Hill 60th anniversary volume, Pergamon, pp 265–302

    Google Scholar 

  • Havner KS (1992) Finite plastic deformation of crystalline solids. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hill R (1966) Generalized constitutive relations for incremental deformation of metal crystals. J Mech Phys Solids 14:95–102

    Article  Google Scholar 

  • Hill R, Rice JR (1972) Constitutive analysis of elastic-plastic crystals at arbitrary strain. J Mech Phys Solids 20:401–413

    Article  MATH  Google Scholar 

  • Hosford WF (1974) A generalized isotropic yield criterion. J Appl Mech (ASME) 41:607–609

    Google Scholar 

  • Hosford WF (2009) Mechanical behavior of solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc Roy Soc London A 348:101–127

    Article  MATH  Google Scholar 

  • Knockaert R, Chastel Y, Massoni (2000) Rate-independent crystalline plasticity, application to FCC materials. Int J Plast 16:179–198

    Google Scholar 

  • Mandel J (1973) Equations constitutives directeurs dans les milieux plastiques at viscoplastiques. Int J Solids Struct 9:725–740

    Article  MATH  Google Scholar 

  • Mandel J (1974) Director vectors and constitutive equations for plastic and viscoplastic media. In: Sawczuk A (ed) Problems of plasticity, proceedings of international symposium foundation of plasticity. Noordhoff Int. Publ., Leyden, Netherland, pp 135–141

    Google Scholar 

  • Miehe C, Schroder J (2001) A comparative study of stress update algorithms for rate-independent and rate-dependent crystal plasticity. Int J Numer Meth Eng 50:273–298

    Article  MATH  Google Scholar 

  • Nakada Y, Keh AS (1966) Latent hardening in iron single crystals. Acta Metall 14:961–973

    Article  Google Scholar 

  • Peirce D, Asaro JR, Needleman A (1982) Overview 21: an analysis of nonuniform and localized deformation in ductile single crystals. Act Metall 30:1087–1119

    Article  Google Scholar 

  • Peirce D, Asaro JR, Needleman A (1983) Overview 32: material rate dependence and localized deformation in crystal solids. Act Metall 31:1951–1976

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1988) Numerical recipies. In: The art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324

    Google Scholar 

  • Xu B, Jiang Y (2004) A cyclic plasticity model for single crystals. Int J Plast 20:2161–2178

    Article  MATH  Google Scholar 

  • Yoshida K, Kuroda M (2012) Comparison of bifurcation and imperfection analyses of localized necking in rate-independent polycrystalline sheets. Int J Solids Struct 49:2073–2084

    Article  Google Scholar 

  • Zamiri A, Pourbogharat F (2010) A novel yield function for single crystal based on combined constraints optimization. Int J Plast 26:731–746

    Article  MATH  Google Scholar 

  • Zamiri A, Pourbogharat F, Barlat F (2007) An effective computational algorithm for rate-independent crystal plasticity based on a single crystal yield surface with an application to tube hydroforming. Int J Plast 23:1126–1147

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hashiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashiguchi, K. (2017). Crystal Plasticity. In: Foundations of Elastoplasticity: Subloading Surface Model. Springer, Cham. https://doi.org/10.1007/978-3-319-48821-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48821-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48819-6

  • Online ISBN: 978-3-319-48821-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics