Skip to main content

Constitutive Equation for Friction: Subloading-Friction Model

  • Chapter
  • First Online:
Foundations of Elastoplasticity: Subloading Surface Model
  • 1003 Accesses

Abstract

All bodies in the natural world are exposed to friction phenomena, contacting with other bodies, except for bodies floating in a vacuum. Therefore, it is indispensable to analyze friction phenomena rigorously in addition to the deformation behavior of bodies themselves in analyses of boundary value problems. The friction phenomenon can be formulated as a constitutive relation in a similar form to the elastoplastic constitutive equation of materials. A constitutive equation for friction with the transition from the static to the kinetic friction and vice versa and the orthotropic and rotational anisotropy is described in this chapter. The stick-slip phenomenon is also delineated, which is an unstable and intermittent motion caused by the friction and thus important for the prediction of earthquake, vibration of machinery, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand L (1993) A constitutive model for interface friction. Comput Mech 12:197–213

    Article  MathSciNet  MATH  Google Scholar 

  • Baumberger T, Heslot F, Perrin B (1994) Crossover from creep to inertial motion in friction dynamics. Nature 30:544–546

    Article  Google Scholar 

  • Bay N, Wanheim T (1976) Real area of contact and friction stresses at high pressure sliding contact. Wear 38:201–209

    Article  Google Scholar 

  • Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  • Bowden FP, Tabor D (1958) The friction and lubrication of solids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Brockley CA, Davis HR (1968) The time-dependence of static friction. J Lubr Tech (ASME) 90:35–41

    Article  Google Scholar 

  • Bureau L, Baumberger T, Caroli C, Ronsin O (2001) Low-velocity friction between macroscopic solids. CR Acad Sci Paris Ser IV Differ Faces Tribol 2:699–707

    Google Scholar 

  • Cheng J-H, Kikuchi N (1985) An incremental constitutive relation of uniaxial contact friction for large deformation analysis. J Appl Mech (ASME) 52:639–648

    Article  MATH  Google Scholar 

  • Courtney-Pratt JS, Eisner E (1957) The effect of a tangential force on the contact metallic bodies. Proc Roy Soc A 238:529–550

    Article  Google Scholar 

  • Curnier A (1984) A theory of friction. Int J Solids Struct 20:637–647

    Article  MATH  Google Scholar 

  • Derjaguin BV, Push VE, Tolstoi DM (1957) A theory of stick-slipping of solids. In: Proceedings of the conference on lubrication and wear, Institute of Mechanical Engineers, London, pp 257–268

    Google Scholar 

  • Dieterich JH (1978) Time-dependent friction and the mechanism of stick-slip. Pure Appl Geophys 116:790–806

    Article  Google Scholar 

  • Diteterih JH (1979) Modeling of rock friction 1. Experimental results and constitutive equations. J Geophys Res 84:2161–2168

    Article  Google Scholar 

  • Dokos SJ (1946) Sliding friction under extreme pressure—I. Trans ASME 68:A148–A156

    Google Scholar 

  • Drucker DC (1988) Conventional and unconventional plastic response and representation. Appl Mech Rev (ASME) 41:151–167

    Google Scholar 

  • Ferrero JF, Barrau JJ (1997) Study of dry friction under small displacements and near-zero sliding velocity. Wear 209:322–327

    Article  Google Scholar 

  • Fredriksson B (1976) Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems. Comput Struct 6:281–290

    Article  MATH  Google Scholar 

  • Gearing BP, Moon HS, Anand L (2001) A plasticity model for interface friction: application to sheet metal forming. Int J Plast 17:237–271

    Article  MATH  Google Scholar 

  • Hashiguchi K (1980) Constitutive equations of elastoplastic materials with elastic-plastic transition. J Appl Mech (ASME) 47:266–272

    Article  MATH  Google Scholar 

  • Hashiguchi K (1989) Subloading surface model in unconventional plasticity. Int J Solids Struct 25:917–945

    Article  MATH  Google Scholar 

  • Hashiguchi K (2006) Constitutive model of friction with transition from static- to kinetic-friction-time-dependent subloading-friction model. In: Proceedings of the international symposium plasticity 2006, pp 178–180

    Google Scholar 

  • Hashiguchi K (2007) Anisotropic constitutive equation of friction with rotational hardening. In: Proceedings of the 13th international symposium on plasticity and its current applications, pp 34–36

    Google Scholar 

  • Hashiguchi K (2009) Elastoplasticity theory. Lecture note in applied comptutational mechanics, 1st edn. Springer-Verlag, Heidelberg

    Google Scholar 

  • Hashiguchi K (2013a) General description of elastoplastic deformation/sliding phenomena of solids in high accuracy and numerical efficiency: subloading surface concept. Arch Compt Meth Eng 20:361–417

    Article  MathSciNet  MATH  Google Scholar 

  • Hashiguchi K (2013b) Elastoplasticity theory. Lecture note in applied computational mechanics, 2nd edn. Springer-Verlag, Heidelberg

    Google Scholar 

  • Hashiguchi K, Ozaki S (2007) Constitutive equation of friction with rotational and orthotropic anisotropy. J Appl Mech (JSCE) 10:383–389

    Article  Google Scholar 

  • Hashiguchi K, Ozaki S (2008a) Constitutive equation for friction with transition from static to kinetic friction and recovery of static friction. Int J Plast 24:2102–2124

    Article  MATH  Google Scholar 

  • Hashiguchi K, Ozaki S (2008b) Anisotropic constitutive equation for friction with transition from static to kinetic friction and vice versa. J Appl Mech (JSCE) 11:271–282

    Article  MATH  Google Scholar 

  • Hashiguchi K, Ozaki S, Okayasu T (2005) Unconventional friction theory based on the subloading surface concept. Int J Solids Struct 42:1705–1727

    Article  MATH  Google Scholar 

  • Hashiguchi K, Ueno M, Kuwayama T, Suzuki N, Yonemura S, Yoshikawa N (2016) Constitutive equation of friction based on the subloading surface concept. Proc R Soc Lond A472:1–24

    MathSciNet  Google Scholar 

  • Hohenemser K, Prager W (1932) Uber die Ansatze der Mechanik isotroper Kontinua. ZAMM 12:216–226

    Article  MATH  Google Scholar 

  • Horowitz F, Ruina A (1989) Slip patterns in a spatially homogeneous fault model. J Geophys Res 94:10279–10298

    Article  Google Scholar 

  • Howe PG, Benson DP, Puddington IE (1955) London-Van der Waals’ attractive forces between glass surface. Can J Chem 33:1375–1383

    Article  Google Scholar 

  • Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond A 348:101–127

    Article  MATH  Google Scholar 

  • Kame N, Fujita S, Nakatani M, Kusakabe T (2013) Effects of a revised rate- and state-dependent friction law on aftershock triggering model. Tectonophysics 600:187–195

    Article  Google Scholar 

  • Kato S, Sato N, Matsubayashi T (1972) Some considerations on characteristics of static friction of machine tool sideway. J Lubr Tech (ASME) 94:234–247

    Article  Google Scholar 

  • Kikuchi N, Oden JT (1988) Contact problem in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Michalowski R, Mroz Z (1978) Associated and non-associated sliding rules in contact friction problems. Archiv Mech 30:259–276

    MATH  Google Scholar 

  • Mroz Z, Stupkiewicz S (1994) An anisotropic friction and wear model. Int J Solids Struct 31:1113–1131

    Article  MATH  Google Scholar 

  • Nakada Y, Keh AS (1966) Latent hardening in iron single crystals. Acta Metall 14:961–973

    Article  Google Scholar 

  • Norton FH (1929) Creep of steel at high temperature. McGraw-Hill, New York

    Google Scholar 

  • Oden JT, Martines JAC (1986) Models and computational methods for dynamic friction phenomena. Comput Meth Appl Mech Eng 52:527–634

    Article  MathSciNet  Google Scholar 

  • Oden JT, Pires EB (1983a) Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws. Comput Struct 19:137–147

    Article  Google Scholar 

  • Oden JT, Pires EB (1983b) Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. J Appl Mech (ASME) 50:67–76

    Article  MathSciNet  MATH  Google Scholar 

  • Ozaki S, Hashiguchi K (2010) Numerical analysis of stick-slip instability by a rate-dependent elastoplastic formulation for friction. Tribol Int 43:2120–2133

    Article  Google Scholar 

  • Ozaki S, Hikida K, Hashiguchi K (2012) Elastoplastic formulation for friction with orthotropic anisotropy and rotational hardening. Int J Solids Struct 49:648–657

    Article  Google Scholar 

  • Pan J, Rice JR (1983) Rate sensitivity of plastic flow and implications for yield surface vertices. J Mech Phys Solids 19:973–987

    MATH  Google Scholar 

  • Perić D, Owen RJ (1992) Computational model for 3-D contact problems with friction based on the penalty method. Int J Numer Meth Eng 35:1289–1309

    Article  MATH  Google Scholar 

  • Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Quart Appl Math 20:321–332

    Article  MathSciNet  MATH  Google Scholar 

  • Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377

    Article  Google Scholar 

  • Prager W (1961) Introduction to mechanics of continua. Ginn & Company, Boston

    MATH  Google Scholar 

  • Rabinowicz E (1951) The nature of the static and kinetic coefficients of friction. J Appl Phys 22:1373–1379

    Article  Google Scholar 

  • Rabinowicz E (1958) The intrinsic variables affecting the stick-slip process. Proc Phys Soc 71:668–675

    Article  Google Scholar 

  • Rice JR, Ruina AL (1983) Stability of steady frictional slipping. J Appl Mech (ASME) 50:343–349

    Article  MATH  Google Scholar 

  • Rice JR, Lapusta N, Ranjith K (2001) Rate and state dependent friction and the stability of sliding between elastically deformable solids. J Mech Phys Solids 49:1865–1898

    Article  MATH  Google Scholar 

  • Ruina AL (1980) Friction laws and instabilities: quasistatic analysis of some dry frictional behavior. Ph.D. thesis, Brown University, Providence

    Google Scholar 

  • Ruina AL (1983) Slip instability and state variable friction laws. J Geophys Res 88:10359–10370

    Article  Google Scholar 

  • Scholz CH (1998) Rate-and state-variable friction law. Nature 391:37–41

    Article  Google Scholar 

  • Seguchi Y, Shindo A, Tomita Y, Sunohara M (1974) Sliding rule of friction in plastic forming of metal. Comput Meth. Nonlinear Mech 683–692

    Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Stribeck R (1902) Die Wesentlichen Eigenschaften der Gleit- und Rollenlager. Z Verein Deut Ing (in German) 46:1341–1348

    Google Scholar 

  • Truesdell C (1955) Hypo-elasticity. J Ration Mech Anal 4:83–133

    MathSciNet  MATH  Google Scholar 

  • Wriggers P (2003) Computational contact mechanics. Wiley, Hoboken

    MATH  Google Scholar 

  • Wriggers P, Van Vu T, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37:319–331

    Article  MATH  Google Scholar 

  • Zhong Z-H (1993) Finite element procedures for contact-impact problems. Oxford University Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hashiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashiguchi, K. (2017). Constitutive Equation for Friction: Subloading-Friction Model. In: Foundations of Elastoplasticity: Subloading Surface Model. Springer, Cham. https://doi.org/10.1007/978-3-319-48821-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48821-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48819-6

  • Online ISBN: 978-3-319-48821-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics