Skip to main content
  • 1004 Accesses

Abstract

The elastic even deformation due to the deformation of material particles themselves is induced even when the stress is low, the elastoplastic deformation due to the slips between material particles (dislocations of crystal lattices in case of metals and slips between soils particles in soils) is induced when the stress increases up to a certain stress (yield stress) and the damage due to the separations of material particles is induced when the stress further increases. The phenomenological formulation of the deformation up to the failure induced in the damage process within the framework of the continuum mechanics is called the continuum damage mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect. CEGB report RD/B/N 731 [or in Materials at High Temperature 24:1–26 (2007)]

    Google Scholar 

  • Betton J (1986) Application of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy. Eng Fract Mech 25:573–584

    Article  Google Scholar 

  • Chaboche JL (1982) The concept of effective stress applied to elasticity and viscoplasticity in the presence of anisotropic damage. In: Boehler JP (ed) Mechanical behavior of anisotropic solids. Matrinus Nijhoff Publ., Hague, Netherland

    Google Scholar 

  • Chaboche JL (1988) Continuum damage mechanics, Pert I General concept; Part II Damage growth, crack initiation, and crack growth. J Appl Mech (ASME) 55:59–72

    Article  Google Scholar 

  • Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Technol ASME 102:249–256

    Article  Google Scholar 

  • Cordebois JP, Sidoroff F (1982a) Damage induced elastic anisotropy. In: Boehler JP (ed) Mechanical behavior of anisotropic solids. Martinuus Nijhoff Publ., pp 761–774

    Google Scholar 

  • Cordebois JP, Sidoroff F (1982b) Endommagement anisotrope en elasticite et plasticite. J de Mech Theor et Appl Numero Spec 45–60

    Google Scholar 

  • de Souza Neto EA, Perić D, Owen DJR (2008) Computational methods for plasticity. Wiley, Chichester, UK

    Book  Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous media. J Eng Mater Technol (ASME) 99:2–15

    Article  Google Scholar 

  • Hashiguchi K (2015a) Subloading-damage constitutive equation. Proc Compt Eng Conf Japan 20:D-2-4

    Google Scholar 

  • Kachanov LM (1958) On rupture time under condition of creep. Izvestia Akademi Nauk SSSR, Otd Tekhn Nauk 8:26–31 (in Russian)

    Google Scholar 

  • Ladevéze P, Lemaitre JA (1984) Damage effective stress in quasi unilateral conditions. In: 16th international congress of theoretical and applied mechanics, Lyngby, Denmark

    Google Scholar 

  • Lemaitre JA (1971) Evaluation of dissipation and damage in metals subjected to dynamic loading. In: Proceedings of the International Congress on Mechanical Behavior of Materials 1 (ICM 1), Kyoto

    Google Scholar 

  • Lemaitre JA (1992) A course on damage mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Lemaitre JA, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lemaitre JA, Desmoral R (2005) Engineering damage mechanics. Springer, Heidelberg

    Google Scholar 

  • Lemaitre JA, Dosmorat R, Sauzay M (2000) Anisotropic damage law of evolution. Eur J Mech A/Solids 19:182–208

    Article  Google Scholar 

  • Mengoni M, Ponthot JP (2015) A generic anisotropic continuum damage model integration scheme adaptable to both ductile damage and biological damage-like situations. Int J Plast 66:46–70

    Article  Google Scholar 

  • Murakami S (1988) Mechanical modelling of material damage. J Appl Mech (ASME) 55:280–286

    Article  Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Springer, Dordrecht, Netherland

    Book  Google Scholar 

  • Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In: Proceedings of the 3rd IUTAM symposium on creep in structures, pp 422–444

    Google Scholar 

  • Needleman A, Rice JR (1978) Limits to ductility set by plastic flow localization. In: Koistinen DP, Wang N-M (eds) Mechanics of sheet metal forming. Plenum press, New York, pp 237–265

    Chapter  Google Scholar 

  • Needleman A, Tvergaard V (1985) Material strain-rate sensitivity in round tensile bar. In: Proceedings of the international symposium on plastic instability. Pressure de l’cole nationale des Ponts et Shausseses, Paris, pp 251–262

    Google Scholar 

  • Rabotnov YN (1969) Creep problems in structural members. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Hashiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashiguchi, K. (2017). Damage Model. In: Foundations of Elastoplasticity: Subloading Surface Model. Springer, Cham. https://doi.org/10.1007/978-3-319-48821-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48821-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48819-6

  • Online ISBN: 978-3-319-48821-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics