Skip to main content

A Geometric Face of Diophantine Analysis

  • Chapter
  • First Online:
Diophantine Analysis

Part of the book series: Trends in Mathematics ((TM))

  • 1020 Accesses

Abstract

Geometry of numbers is a powerful tool in studying Diophantine inequalities. In geometry of numbers a basic question is to find a non-zero lattice vector from a convex subset in an n-dimensional space, say in \(\mathbb {R}^n\). Hermann Minkowski answered this challenge with his convex body theorems. In these lectures we shall discuss how to apply Minkowski’s theorems to prove classical Diophantine inequalities and some variations of Siegel’s lemma. Further, we shall shortly discuss corresponding inequalities over imaginary quadratic fields. From the nature of the above results follows that a lower bound for the absolute value of an arbitrary non-zero linear form in m linearly independent numbers is not bigger than a certain positive function depending on the coefficients and the number of variables of the linear form. For a concrete set of numbers it is a big challenge to find such lower bounds. We will give a recent example on such lower bounds, namely a new generalised transcendence measure for e.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Baker, On some Diophantine inequalities involving the exponential function. Canad. J. Math. 17, 616–626 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Baker, Transcendental Number Theory (Cambridge University Press, Cambridge, 1975)

    Book  MATH  Google Scholar 

  3. E. Bombieri, J.D. Vaaler, On Siegel’s lemma. Invent. Math. 73, 11–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Bombieri et al., Recent Progress in Analytic Number Theory, vol. 2, On \(G\)-functions (Academic Press, London-New York, 1981), pp. 1–67. (Durham, 1979)

    Google Scholar 

  5. J.W.S. Cassels, An introduction to the geometry of numbers. Corrected reprint of the Classics in Mathematics, 1971 edition (Springer, Berlin, 1997)

    Google Scholar 

  6. A.-M. Ernvall-Hytönen, K. Leppälä, T. Matala-aho, An explicit Baker type lower bound of exponential values. Proc. Roy. Soc. Edinburgh Sect. A 145, 1153–1182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Mahler, On a paper by A. Baker on the approximation of rational powers of \(e\). Acta Arith. 27, 61–87 (1975)

    MathSciNet  MATH  Google Scholar 

  8. T. Matala-aho, On Baker type lower bounds for linear forms. Acta Arith. 172, 305–323 (2016)

    Google Scholar 

  9. J.J. Rotman, Advanced Modern Algebra (Pearson, New York, 2002)

    MATH  Google Scholar 

  10. W.M. Schmidt, Diophantine Approximation, vol. 785, Lecture Notes in Mathematics (Springer, Berlin, 1980)

    MATH  Google Scholar 

  11. W.M. Schmidt, Diophantine approximations and Diophantine equations, vol. 1467, Lecture Notes in Mathematics (Springer, Berlin, 1991)

    Google Scholar 

  12. A.B. Shidlovskii, Transcendental numbers, de Gruyter Studies in Mathematics 12 (Walter de Gruyter and Co., Berlin, 1989)

    Google Scholar 

  13. C.L. Siegel, Transcendental Numbers, vol. 16, Annals of Mathematics Studies (Princeton university press, Princeton, 1949)

    MATH  Google Scholar 

  14. J. Steuding, Diophantine analysis (Chapman & Hall/CRC, Boca Baton, 2005)

    Book  MATH  Google Scholar 

  15. J.D. Vaaler, A geometric inequality with applications to linear forms. Pacific J. Math. 83, 543–553 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani Matala-aho .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Cauchy–Schwarz Inequality

Now we suppose that R is an integral domain with absolute value and the norm of \(\overline{a}\in R^N\) is defined by

$$\begin{aligned} \Vert \overline{a}\Vert =\sqrt{\overline{a}\cdot \overline{a}} \end{aligned}$$

via the inner product \(\cdot \) in \(R^N\).

Lemma 14.6

(Cauchy–Schwarz inequality)

$$\begin{aligned} |\overline{a}\cdot \overline{b}|\le \Vert \overline{a}\Vert \Vert \overline{b}\Vert \quad \text{ for } \text{ all }\quad \overline{a}, \overline{b}\in R^{N}. \end{aligned}$$
(14.9)

The equality

$$\begin{aligned} |\overline{a}\cdot \overline{b}|=\Vert \overline{a}\Vert \Vert \overline{b}\Vert \end{aligned}$$

implies

$$\begin{aligned} \Vert \overline{b}\Vert \overline{a}=\omega \Vert \overline{a}\Vert \overline{b},\quad |\omega |=1,\ \omega \in R. \end{aligned}$$
(14.10)

In particular, when \(R=\mathbb {Z}\), then \(\omega =\pm 1\).

Proof

Write

$$\begin{aligned} \overline{w}:=\Vert \overline{b}\Vert ^2\overline{a}-(\overline{a}\cdot \overline{b})\overline{b}. \end{aligned}$$

Then

$$\begin{aligned} \overline{w}\cdot \overline{b}=0 \end{aligned}$$

and consequently

$$\begin{aligned} \Vert \overline{b}\Vert ^4\Vert \overline{a}\Vert ^2=\Vert \overline{w}\Vert ^2+|\overline{a}\cdot \overline{b}|^2\Vert \overline{b}\Vert ^2 \ge |\overline{a}\cdot \overline{b}|^2\Vert \overline{b}\Vert ^2 \end{aligned}$$
(14.11)

which implies (14.9).

Suppose now

$$\begin{aligned} |\overline{a}\cdot \overline{b}|=\Vert \overline{a}\Vert \Vert \overline{b}\Vert \quad \Leftrightarrow \quad \overline{a}\cdot \overline{b}=\omega \Vert \overline{a}\Vert \Vert \overline{b}\Vert ,\quad |\omega |=1,\ \omega \in R. \end{aligned}$$

Then (14.11) reads

$$\begin{aligned} \Vert \overline{b}\Vert ^4\Vert \overline{a}\Vert ^2=\Vert \overline{w}\Vert ^2+\Vert \overline{a}\Vert ^2\Vert \overline{b}\Vert ^4. \end{aligned}$$

Hence,

$$\begin{aligned} \Vert \overline{w}\Vert ^2=0\quad \Rightarrow \quad \overline{w}=\Vert \overline{b}\Vert ^2\overline{a}-(\overline{a}\cdot \overline{b})\overline{b}=\overline{0}\\ \quad \Rightarrow \quad \Vert \overline{b}\Vert ^2\overline{a}=(\overline{a}\cdot \overline{b})\overline{b}= \omega \Vert \overline{a}\Vert \Vert \overline{b}\Vert \overline{b}, \end{aligned}$$

which proves (14.10).   \(\square \)

1.2 Gram Determinant

The Gram determinant \(\det [\overline{b}_m\cdot \overline{b}_n]_{1\le m,n\le M}\) satisfies the following estimates

$$\begin{aligned} \sqrt{\det (\mathcal {A}\mathcal {A}^t)}= & {} \sqrt{\det [\overline{b}_m\cdot \overline{b}_n]_{1\le m,n\le M}}\nonumber \\\le & {} \sqrt{\prod \limits _{m=1}^{M}\overline{b}_m\cdot \overline{b}_m}= \prod \limits _{m=1}^{M}\Vert \overline{b}_m\Vert _{2}\nonumber \\\le & {} \prod \limits _{m=1}^{M}\Vert \overline{b}_m\Vert _{1}\le \prod \limits _{m=1}^{M}N\underset{1\le n\le N}{\max }|a_{m,n}|\nonumber \\\le & {} \left( N\underset{1\le m,n\le N}{\max }|a_{m,n}|\right) ^M. \end{aligned}$$
(14.12)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Matala-aho, T. (2016). A Geometric Face of Diophantine Analysis. In: Steuding, J. (eds) Diophantine Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-48817-2_3

Download citation

Publish with us

Policies and ethics