Skip to main content

Metric Diophantine Approximation—From Continued Fractions to Fractals

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Diophantine Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

Diophantine approximation is concerned with the quantitative study of the density of the rational numbers inside the real numbers. The Diophantine properties of a real number can be quantified through its approximation properties by rational (and more generally algebraic) numbers. For rational approximation, continued fractions provide an important tool in studying such properties. For higher dimensional problems and for algebraic approximation, different methods are needed. The metric theory of Diophantine approximation is concerned with the size of sets of numbers enjoying specified Diophantine properties. It is a general feature of the theory that most natural properties give rise to zero–one laws: the set of numbers enjoying the property in question is either null or full with respect to the Lebesgue measure. A more refined study of the null sets can be done using the notions of Hausdorff measure and dimension. Over the years, considerable work has gone into studying metric Diophantine approximation on subsets of \(\mathbb {R}^n\). The initial focus was on curves, surfaces and manifolds, but in recent years much effort has also gone into the study of fractal subsets. Already in the setting of rational approximation of real numbers, many problems which seem simple enough remain open. For instance, it is not known whether the Cantor middle third set contains an algebraic, irrational number (it is conjectured not to do so). In these notes, starting from the classical setup, I will work towards the study of metric Diophantine approximation on fractal sets. Along the way, we will touch upon some major open problems in Diophantine approximation, such as the Littlewood conjecture and the Duffin–Schaeffer conjecture; and newer methods originating in ergodic theory and dynamical systems will also be discussed. The required elements from fractal geometry will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. An, Badziahin-Pollington-Velani’s theorem and Schmidt’s game. Bull. Lond. Math. Soc. 45(4), 721–733 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Badziahin, S. Velani, Badly approximable points on planar curves and a problem of Davenport. Math. Ann. 359(3–4), 969–1023 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Badziahin, A. Pollington, S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt’s conjecture. Ann. of Math. (2) 174(3), 1837–1883 (2011)

    Google Scholar 

  4. V. Beresnevich, On approximation of real numbers by real algebraic numbers. Acta Arith. 90(2), 97–112 (1999)

    MathSciNet  MATH  Google Scholar 

  5. V. Beresnevich, Badly approximable points on manifolds. Invent. Math. 202(3), 1199–1240 (2015)

    Google Scholar 

  6. V. Beresnevich, S. Velani, Schmidt’s theorem, Hausdorff measures, and slicing. Int. Math. Res. Not. 24 (2006). (Art. ID 48794)

    Google Scholar 

  7. V. Beresnevich, S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. Math. (2) 164(3), 971–992 (2006)

    Google Scholar 

  8. V. Beresnevich, D. Dickinson, S. Velani, Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc. 179(846) (2006). (x+91)

    Google Scholar 

  9. V.I. Bernik, The exact order of approximating zero by values of integral polynomials. Acta Arith. 53(1), 17–28 (1989)

    MathSciNet  MATH  Google Scholar 

  10. A.S. Besicovitch, Sets of fractional dimension (IV); on rational approximation to real numbers. J. Lond. Math. Soc. 9, 126–131 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Billingsley, Ergodic Theory and Information (Robert E. Krieger Publishing Co., Huntington, 1978)

    MATH  Google Scholar 

  12. É. Borel, Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Math. Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  13. Y. Bugeaud, Approximation by Algebraic Numbers (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  14. Y. Bugeaud, M.M. Dodson, S. Kristensen, Zero-infinity laws in Diophantine approximation. Q. J. Math. 56(3), 311–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Carathéodory, Über das lineare Mass von Punktmengen, eine Verallgemeinerung des Längenbegriffs, Gött. Nachr. 404–426 (2014)

    Google Scholar 

  16. J.W.S. Cassels, An Introduction to Diophantine Approximation (Cambridge University Press, New York, 1957)

    MATH  Google Scholar 

  17. J.W.S. Cassels, An Introduction to the Geometry of Numbers (Springer-Verlag, Berlin, 1997)

    MATH  Google Scholar 

  18. L.G.P. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einige Anwendungen auf die Theorie der Zahlen, S.-B. Preuss. Akad Wiss. 93–95 (1842)

    Google Scholar 

  19. M.M. Dodson, Geometric and probabilistic ideas in the metric theory of Diophantine approximations. Uspekhi Mat. Nauk 48(5)(293), 77–106 (1993)

    Google Scholar 

  20. M.M. Dodson, B.P. Rynne, J.A.G. Vickers, Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37(1), 59–73 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.J. Duffin, A.C. Schaeffer, Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8, 243–255 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory (Springer, London, 2011)

    MATH  Google Scholar 

  23. M. Einsiedler, A. Katok, E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture. Ann. Math. (2) 164(2), 513–560 (2006)

    Google Scholar 

  24. K. Falconer, Fractal Geometry, Mathematical Foundations and Applications (Wiley, Hoboken, 2003)

    Book  MATH  Google Scholar 

  25. O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel. Lunds Univ. Math. Sem 3, 1–118 (1935)

    MATH  Google Scholar 

  26. G. Harman, Metric Number Theory (The Clarendon Press, Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  27. F. Hausdorff, Dimension und äusseres Mass. Math. Ann. 79, 157–179 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Haynes, J.L. Jensen, S. Kristensen, Metrical musings on Littlewood and friends. Proc. Amer. Math. Soc. 142(2), 457–466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Jarník, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz. 91–106 (1928–1929)

    Google Scholar 

  30. V. Jarník, Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sbornik 36, 91–106 (1929)

    MATH  Google Scholar 

  31. J.-P. Kahane, R. Salem, Ensembles parfaits et séries trigonométriques (Hermann, Paris, 1994)

    MATH  Google Scholar 

  32. R. Kaufman, Continued fractions and Fourier transforms. Mathematika 27(2), 262–267 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Kleinbock, B. Weiss, Badly approximable vectors on fractals. Israel J. Math. 149, 137–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Kleinbock, E. Lindenstrauss, B. Weiss, On fractal measures and Diophantine approximation, Selecta Math. (N.S.) 10(4), 479–523 (2004)

    Google Scholar 

  35. S. Kristensen, Approximating numbers with missing digits by algebraic numbers. Proc. Edinb. Math. Soc. (2) 49(3), 657–666 (2006)

    Google Scholar 

  36. S. Kristensen, R. Thorn, S. Velani, Diophantine approximation and badly approximable sets. Adv. Math. 203(1), 132–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Levesley, C. Salp, S. Velani, On a problem of K. Mahler: Diophantine approximation and Cantor sets. Math. Ann. 338(1), 97–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  39. H. Minkowski, Geometrie der Zahlen, Leipzig and Berlin (1896)

    Google Scholar 

  40. H. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis (American Mathematical Society, Providence, 1994)

    Book  MATH  Google Scholar 

  41. G.K. Pedersen, Analysis Now (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  42. A.D. Pollington, S. Velani, On a problem in simultaneous Diophantine approximation: Littlewood’s conjecture. Acta Math. 185(2), 287–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. E.T. Poulsen, A simplex with dense extreme points. Ann. Inst. Fourier. Grenoble 11, 83–87 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  44. W.M. Schmidt, Über die Normalität von Zahlen zu verschiedenen Basen. Acta Arith. 7, 299–309 (1961/1962)

    Google Scholar 

  45. W.M. Schmidt, On badly approximable numbers and certain games. Trans. Am. Math. Soc. 123, 178–199 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Series, The modular surface and continued fractions. J. London Math. Soc. (2) 31(1), 69–80 (1985)

    Google Scholar 

  47. V.G. Sprindžuk, Metric Theory of Diophantine Approximations (Wiley, London, 1979)

    MATH  Google Scholar 

  48. E. Wirsing, Approximation mit Algebraischen Zahlen beschränkten Grades. J. Reine Angew. Math. 206, 67–77 (1961)

    MathSciNet  MATH  Google Scholar 

  49. A. Ya, Khintchine (Dover Publications Inc, Mineola, NY, Continued fractions, 1997)

    Google Scholar 

Download references

Acknowledgements

I acknowledge the support of the Danish Natural Science Research Council. I am grateful to the organisers and participants of the Summer School ‘Diophantine Analysis’ in Würzburg 2014. Finally, I warmly thank Kalle Leppälä, Steffen Højris Pedersen and Morten Hein Tiljeset for their comments on various drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kristensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Kristensen, S. (2016). Metric Diophantine Approximation—From Continued Fractions to Fractals. In: Steuding, J. (eds) Diophantine Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-48817-2_2

Download citation

Publish with us

Policies and ethics