Skip to main content

Identification of Nonlinear Differential Systems for Bacteria Population Under Antibiotics Influence

  • Conference paper
  • First Online:
New Trends in Analysis and Interdisciplinary Applications

Part of the book series: Trends in Mathematics ((RESPERSP))

Abstract

A bacteria population under bactericidal antibiotics influence is considered. A part of the bacteria is resistant to the antibiotic. The system is described by nonlinear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gandra et al. Trends in antibiotic resistance among bacteria isolated from blood cultures using a large private laboratory network data in India: 2008–2014. Antimicrob. Resist. Infect. Control 4, 1 (2015)

    Article  Google Scholar 

  2. D. Nichol et al. Steering evolution with sequential therapy to prevent the emergence of bacterial antibiotic resistance. PLOS Comput. Biol. 11 (9), e1004493 (2015). doi:10.1371/journal.pcbi.1004493

  3. European Centre for Disease Prevention and Control/European Medicines Agency. Annual epidemiological report, Antimicrobial resistance and healthcare-associated infections (2014), http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf. Accessed April 2015

  4. R.J. Fair, Y. Tor. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6, 25–64 (2014)

    Google Scholar 

  5. I.M. Gould. Antibiotic resistance: the perfect storm. Int. J. Antimicrob Agents 34, 3 (2009). doi:10.1016/S0924-8579(09)70549-7

    Google Scholar 

  6. D.S. Davies et al. A global overview of antimicrobial resistance. AMR Control 2015. Overcoming global antimicrobial resistance, in WAAAR (2015), pp. 12–16

    Google Scholar 

  7. G.F. Webb et al. A model of antibiotic-resistant bacterial epidemics in hospitals. PNAS 102 (37), 13343–13348 (2005)

    Article  Google Scholar 

  8. F. Chamchod, S. Ruan, Modeling methicillin-resistant Staphylococcus aureus in hospitals: Transmission dynamics, antibiotic usage and its history. Theor. Biol. Med. Model. 9, 25 (2012). doi:10.1186/1742-4682-9-25

    Article  Google Scholar 

  9. M.J. Bonten et al., Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin. Infect. Dis. 33 (10), 1739–1746 (2001)

    Article  Google Scholar 

  10. B.R. Levin, Minimizing potential resistance: a population dynamics view. Clin. Infect. Dis. 33, 3 (2001)

    Article  Google Scholar 

  11. O. Gefen, N.Q. Balaban. The importance of being persistent: heterogeneity of bacterial populations underantibiotic stress. FEMS Microbiol. Rev. 32 (2), 1–14 (2008)

    Google Scholar 

  12. M.H. Zwietering et al., Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56 (6), 1875–1881 (1990)

    Google Scholar 

  13. R.R. Regoes et al., Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob. Agents Chemother. 48 (10), 3670–3676 (2004)

    Article  Google Scholar 

  14. X. Kathy Zhou et al., Statistical methods for automated drug susceptibility testing: Bayesian minimum inhibitory concentration prediction from growth curves. Ann. Appl. Stat. 3 (2), 710–730 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.I. Andersson, D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8 (4), 260–271 (2010)

    Google Scholar 

  16. G. Kahlmeter et al., European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 52 (2), 145–148 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Serovajsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Serovajsky, S. et al. (2017). Identification of Nonlinear Differential Systems for Bacteria Population Under Antibiotics Influence. In: Dang, P., Ku, M., Qian, T., Rodino, L. (eds) New Trends in Analysis and Interdisciplinary Applications. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-48812-7_19

Download citation

Publish with us

Policies and ethics