Skip to main content

Vinyl Ester (BisGMA)/SEBS/f-MWCNTs Based Nanocomposites: Preparation and Applications

  • Chapter
  • First Online:
Rubber Based Bionanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 56))

  • 517 Accesses

Abstract

The present research focuses mainly on the preparation of Vinyl ester/SEBS blend based nanocomposites incorporated with amine functionalized multiwalled carbon nanotubes (MWCNTs-NH2) as the compatibilizer. The vinyl ester used in this work is Bisphenol-A glycidyldimethacrylate (BisGMA) which has been blended with a block copolymer i.e. Styrene-Ethylene-Butylene-Styrene (SEBS). Owing to the difference in their solubility parameters, the two polymeric components i.e. BisGMA and SEBS form an immiscible blend system. Since the solubility parameter value of MWCNTs-NH2 is intermediate between that of the immiscible components, it has been used to overcome the immiscibility factor, thereby inducing compatibility in the above blend network. Here, two types of nanocomposites have been fabricated for a comparative study: BisGMA/ungrafted SEBS/f-MWCNTs and BisGMA/maleic anhydride grafted SEBS (MAH-g-SEBS)/f-MWCNTs. The preparation techniques for the above nanocomposites have been described, the materials that have been incorporated and the fabricated nanocomposites have been characterized thoroughly using various characterization techniques and the reaction mechanism of compatibilization has been studied. Moreover, the wide range of applications that the nanocomposites can be suitable of have also been mentioned in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Tanoglu, A.T. Seyhan, Investigating the effects of a polyester preforming binder on the mechanical and ballistic performance of E-glass fiber reinforced polyester composites. Int. J. Adhes. Adhes. 23, 1–8 (2003)

    Article  Google Scholar 

  2. B.H. Stuwart, Polymer Analysis (Wiley, NY, 2002), 24p

    Google Scholar 

  3. A. Kumar, R.K. Gupta, Fundamentals of polymer engineering. Marcel Dekker 1, 5–69 (2003)

    Google Scholar 

  4. S.A. Samsudin, A. Hassan, M. Mokhtar, S.M. Jamaluddin, Chemical resistance evaluation of polystyrene/polypropylene blends: effect of blend compositions and SEBS content. Malays. Polym. J. (MPJ) 1, 11–24 (2006)

    Google Scholar 

  5. E. Yilgor, I. Yilgor, A.K. Banthia et al., Synthesis and characterization of free radical cured Bis-methacryloxy bisphenol-A epoxy networks. Polym. Compos. 4, 120–125 (1983)

    Article  Google Scholar 

  6. I. Yilgor, E. Yilgor, A.K. Banthia et al., A DSC kinetic study of the epoxy network system bisphenol-A diglycidylether- bis(4- aminocyclohexyl)methane. Polym. Bull. 4, 323–327 (1981)

    Article  Google Scholar 

  7. I. Yilgor, E. Yilgor, A.K. Banthia et al., Bis-methacryloxy bisphenol-A networks: Synthesis, characterization, thermal and mechanical properties. Polymer 22, 209–211 (1981)

    Article  Google Scholar 

  8. B.S. Rao, P.J. Madec, E. Marechal, Synthesis of vinyl ester resins. Polym. Bull. 16, 153–157 (1986)

    Article  Google Scholar 

  9. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Article  Google Scholar 

  10. J.S. Martin, J.M. Laza, M.L. Morras et al., Study of the curing process of a vinyl ester resin by means of ESR and DMTA. Polymer 41, 4203–4211 (2000)

    Article  Google Scholar 

  11. J. Selley, Encyclopedia of Polymer Science and Engineering, vol. 12 (Wiley, New York, 1985), pp 124–167

    Google Scholar 

  12. I.K. Varma, B.S. Rao, M.S. Choudhary, V. Choudhary, D.S. Varma, Effect of styrene on vinyl ester resin properties I. Die Angew. Makromol. Chemie 130, 191–210 (1985)

    Article  Google Scholar 

  13. C. Komalan, K.E. George, S. Jacob, S. Thomas, Reactive compatibilization of nylon copolymer/EPDM blends: experimental aspects and their comparison with theory. Polym. Adv. Technol. 19, 351–360 (2008)

    Article  Google Scholar 

  14. C. Komalan, K.E. George, P.A.S. Kumar, K.T. Varughese, S. Thomas, Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer. eXPRESS Polym. Lett. 1, 641–653 (2007)

    Article  Google Scholar 

  15. K. Sill, S. Yoo, T. Emrick, Polymernanoparticle composites, in Dekker Encyclopedia of Nanoscience and Nanotechnology, Chapter 227, Vol. 6 (CRC Press, FL, 2004)

    Google Scholar 

  16. J. Denault, B. Labrecque, Technology Group on Polymer Nanocomposites—PNC-Tech-Industrial Materials Institute. National Research Council Canada, 75 de Mortagne Blvd. Boucherville, Québec, J4B 6Y4, 2004

    Google Scholar 

  17. D. Wagner, R. Vaia, Nanocomposites: issues at the interface. Mater. Today (November, 2004, ISSN: 1369 7021 © Elsevier Ltd)

    Google Scholar 

  18. R. Krishnamoorti, R.A. Vaia, Polymer nanocomposites: synthesis, characterization and modeling in ACS Symposium Series, vol. 804 (American Chemical Society, Washington, DC, 2002)

    Google Scholar 

  19. M. Roux, Master’s Thesis in Engineering Technology (Lulea University of Technology, Lulea, 2002)

    Google Scholar 

  20. Z. Ounaies, C. Park, K.E. Wise, E.J. Sochi, J.S. Harrison, Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637–1646 (2003)

    Article  Google Scholar 

  21. E.B. Kilbride, J.N. Coleman, J. Fraysse, P. Fournet, M. Cadek, M.A. Drury, M.S. Hutzler, S. Roth, W.J. Blau, Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92, 4024–4030 (2002)

    Google Scholar 

  22. C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle, Formation of percolating networks in multi-wall carbon nanotube-epoxy composites. Compos. Sci. Technol. 64, 2309–2314 (2004)

    Article  Google Scholar 

  23. T. Tanaka, T. Yazagawa, Y. Ohki, M. Ochi, M. Harada, T. Imai, Frequency accelerated partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods, in IEEE International Conference on Solid Dielectrics, Winchester, 337–340, 2007

    Google Scholar 

  24. L.S. Schadler, L.C. Brinson, W.G. Sawyer, Polymer nanocomposites: a small part of the story. JOM, Nanocompos. Mater. 59, 53–60 (2007)

    Google Scholar 

  25. S. Datta, J.L. David, Polymeric Compatibilizers: Uses and Benefits in Polymer Blends (Hanser/Gardner Publications, Inc., Cincinnati, Munich, Vienna and New York, 1996)

    Google Scholar 

  26. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  27. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  28. W. Dondero, R.E. Gorga, Handbook of Nanotechnology, IInd edn. (Springer, New York, 2007)

    Google Scholar 

  29. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)

    Article  Google Scholar 

  30. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 11, 1281–1285 (2010)

    Article  Google Scholar 

  31. A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. Khodos, Y. Gorbatov, V. Volkov, C. Journet, Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 (1999)

    Article  Google Scholar 

  32. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotubes actuators. Science 284, 1340–1344 (1999)

    Article  Google Scholar 

  33. C. Niu, E. Sichel, R. Hoch, D. Moy, H. Tennet, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  Google Scholar 

  34. A.M. Ajayan, S. Iijima, Capillarity-induced filling of carbon nanotubes. Nature 361, 333–334 (1993)

    Article  Google Scholar 

  35. X.L. Xie, Y.W. Mai, X. Ping, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R: Rep 49, 89–112 (2005)

    Article  Google Scholar 

  36. R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8, 31–37 (2004)

    Article  Google Scholar 

  37. M. Moniruzzaman, K. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  Google Scholar 

  38. J. Jordan, K.J. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasuk, Experimental trends in polymer nanocomposites—a review. Mater. Sci. Eng. A: Struct 393, 1–11 (2005)

    Article  Google Scholar 

  39. A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40, 1721–1725 (2001)

    Article  Google Scholar 

  40. F. Ciardelli, S. Coiai, E. Passaglia, A. Pucci, G. Ruggeri, Nanocomposites based on polyolefins and functional thermoplastic materials. Polym. Int. 57, 805–836 (2008)

    Article  Google Scholar 

  41. G. Matzeu, A. Pucci, S. Savi, M. Romanelli, F. Di Francesco, A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens. Actuators, A 178, 94–99 (2012)

    Article  Google Scholar 

  42. O. Balkan, H. Demirar, E.S. Kayali, Effects of deformation rates on mechanical properties of PP/SEBS blends. J. Achiev. Mater. Manuf. Eng. 47, 26–33 (2011)

    Google Scholar 

  43. G.X. Chen, H. Shimizu, Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(l-lactide) matrix. Polymer 49(4), 943–951 (2008)

    Article  Google Scholar 

  44. C. Zhou, S. Wang, Y. Zhang, Q. Zhuang, Z. Han, In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes. Polymer 49, 2520–2530 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this paper are thankful to KIIT University for their support and help. The assistance provided by IIT, Kharagpur during the characterization of some of the experimental work is greatly acknowledged.

Further scope of the work

The above blend based nanocomposites can be manipulated in a number of ways to prepare various other nanocomposites by using different types of nanofillers that are available commercially and their properties can be studied. Other functional groups that can be grafted on SEBS can also be thought of and changes can be brought about in the compatibilization mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Pritam Praharaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Praharaj, A.P., Behera, D. (2017). Vinyl Ester (BisGMA)/SEBS/f-MWCNTs Based Nanocomposites: Preparation and Applications. In: Visakh P. M. (eds) Rubber Based Bionanocomposites. Advanced Structured Materials, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-48806-6_9

Download citation

Publish with us

Policies and ethics