Advertisement

Polylactic Acid Based Rubber Composites and Nanocomposites

  • Nazila Dehbari
  • Youhong Tang
  • Nima Moazeni
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 56)

Abstract

Polylactic acid (PLA) is one of the most promising polymers due to its biodegradability and other remarkable properties. It is relatively brittle, which can limit its usage in some applications. With the addition of elastomers, the toughening properties of PLA can increase greatly. However elastomers are commonly categorized as immiscible blends because of their poor adhesion between the dispersed phase and matrix. By enhancing the interaction between two component polymers, chemically or mechanically or by using a compatibilizer in the blend, the performance characteristics of the final product can be enhanced. This chapter deals with the different methods of producing PLA rubber based (nano) composite and its properties, the role of compatibilizers and various applications.

Keywords

Natural Rubber Ethylene Propylene Diene Monomer Epoxidized Natural Rubber Ethylene Propylene Diene Monomer Direct Poly Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Y. Tang is grateful for the research support of a Discovery Early Career Researcher Award (DE120102784) from the Australian Research Council.

References

  1. 1.
    Ajioka, M., Enomoto, K., Suzuki, K., Yamaguchi, A.: The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. Environ. Polym. Degrad. 3, 225–234 (1995)Google Scholar
  2. 2.
    Henton, D.E., Gruber, P., Lunt, J., Randall, J.: Polylactic acid technology. In: Mohanty, A.K., Misra, M., Drzal, L.T. (eds.) Natural Fibers, Biopolymers, and Biocomposites, pp. 527–578. CRC Press, UK (2005)Google Scholar
  3. 3.
    K.A. Athanasiou, G.G. Niederauer, C.M. Agrawal, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996)CrossRefGoogle Scholar
  4. 4.
    L. Xiao, B. Wang, G. Yang, M. Gauthier, Poly(lactic acid)-based biomaterials: synthesis, modification and applications, in Biomedical Science, Engineering and Technology, ed. by D.N. Ghista (InTech, Croatia, 2012), pp. 471–479Google Scholar
  5. 5.
    D.J. Sawyer, Bioprocessing; no longer a field of dreams. Macromol. Symp. 201, 271–281 (2003)CrossRefGoogle Scholar
  6. 6.
    J.R. Dorgan, H.J. Lehermeier, L.I. Palade, J. Cicero, Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 175, 55–66 (2001)CrossRefGoogle Scholar
  7. 7.
    B. Eling, S. Gogolewski, A.J. Pennings, Biodegradable materials of poly(l-lactic acid): I. Melt-spun and solution spun fibers. Polymer 23, 1587–1593 (1982)CrossRefGoogle Scholar
  8. 8.
    B. Gupta, N. Revagade, J. Hilborn, Poly(lactic acid) fiber: an overview. Prog. Polym. Sci. 32, 455–482 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)CrossRefGoogle Scholar
  10. 10.
    E.T.H. Vink, K.R. Rábago, D.A. Glassner, P.R. Gruber, Application of life cycle assessment to Nature WorksTM polylactide (PLA) production. Polym. Degrad. Stab. 80, 403–419 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Hiljanen-Vainio, P. Varpomaa, J. Seppälä, P. Törmälä, Modification of poly(l-lactides) by blending: mechanical and hydrolytic behavior. Macromol. Chem. Phys. 197, 1503–1523 (1996)CrossRefGoogle Scholar
  12. 12.
    Rasal, R.M., Hirt, D.E.: Toughness decrease of PLA–PHBHHx blend films upon surface-confined photo polymerization. J. Biomed. Mater. Res. Part A 88, 1079–1086 (2008)Google Scholar
  13. 13.
    D.W. Grijpma, A.J. Nijenhuis, P.G.T. Van Wijk, A.J. Pennings, High impact strength as-polymerized PLLA. Polym. Bull. 29, 571–578 (1992)CrossRefGoogle Scholar
  14. 14.
    A.V. Janorkar, A.T. Metters, D.E. Hirt, Modification of poly(lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 37, 9151–9159 (2004)CrossRefGoogle Scholar
  15. 15.
    J.E. Bergsma, W.C. De Bruijn, F.R. Rozema, R.R.M. Bos, G. Boering, Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 16, 25–31 (1995)CrossRefGoogle Scholar
  16. 16.
    B.D. Ratner, Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens. Bioelectron. 10, 797–804 (1995)CrossRefGoogle Scholar
  17. 17.
    K.J.L. Burg, J.W.D. Holder, C.R. Culberson, R.J. Beiler, K.G. Greene, A.B. Loebsack, Parameters affecting cellular adhesion to polylactide films. J. Biomater. Sci. Polym. Ed. 10, 147–161 (1999)CrossRefGoogle Scholar
  18. 18.
    D. Garlotta, A literature review of polylactic acid (PLA). Polym. Environ. 9(2), 63–84 (2001)CrossRefGoogle Scholar
  19. 19.
    S. Kalia, L. Avérous, Biopolymers: biomedical and environmental applications, vol. 70. (John Wiley & Sons., 2011)Google Scholar
  20. 20.
    K. Pongtanayut, C. Thongpin, O. Santawitee, The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34, 888–897 (2013)CrossRefGoogle Scholar
  21. 21.
    Elias, H.G.: An introduction to polymer science, pp. 170–190. Wiley, German (1997)Google Scholar
  22. 22.
  23. 23.
    R.A. Shanks, I. Kong, General purpose elastomers: structure, chemistry, physics and performance. Adv. Elastomers I Adv. Struct. Mater. 11, 11–45 (2013)CrossRefGoogle Scholar
  24. 24.
    Fancy, M.A., Joseph, R., Varghese, S.: Elastomer processing. In: Adv. Elastomers I Adv. Struct. Mater. 11, 137–166 (2013)Google Scholar
  25. 25.
  26. 26.
  27. 27.
    C.M. Roland, Immiscible rubber blends. Adv. Elastomers I Adv. Struct. Mater. 11, 167–181 (2013)CrossRefGoogle Scholar
  28. 28.
    Kodal, M., Ozkoc, G.: Micro and nanofillers in rubbers. In: Adv. Elastomers I Adv. Struct. Mater. 11, 303–356 (2013)Google Scholar
  29. 29.
  30. 30.
    N. Bitinis, R. Verdejo, P. Cassagnau, M.A. Lopez-Manchadoa, Structure and properties of polylactide/natural rubber blends. Mater. Chem. Phys. 129, 823–831 (2011)CrossRefGoogle Scholar
  31. 31.
    C. Zhang, W. Wang, Y. Huang, Y. Pan, L. Jiang, Y. Dan, Y. Luo, Z. Peng, Thermal, mechanical and rheological properties of polylactide toughened by epoxidized natural rubber. Mater. Des. 45, 198–205 (2013)CrossRefGoogle Scholar
  32. 32.
    Z. Zakaria, M.S. Islam, A. Hassan, M.K.M. Haafiz, R. Arjmandi, I.M. Inuwa, M. Hasan, Mechanical properties and morphological characterization of PLA/chitosan/ epoxidized natural rubber composites. Adv. Mater. Sci. Eng. 2013, 1–7 (2013)CrossRefGoogle Scholar
  33. 33.
    B. Meng, J. Deng, Q. Liu, Z. Wu, W. Yang, Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polymer J. 48, 127–135 (2012)CrossRefGoogle Scholar
  34. 34.
    N. Petchwattana, S. Covavisaruch, N. Euapanthasate, Utilization of ultrafine acrylate rubber particles as a toughening agent for poly(lactic acid). Mater. Sci. Eng. A 532, 64–70 (2012)CrossRefGoogle Scholar
  35. 35.
    Q. Zhao, Y. Ding, B. Yang, Y. Ning, Q. Fu, Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA). Polym. Testing 32, 299–305 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Ishida, R. Nagasaki, K. Chino, T. Dong, Y. Inoue, Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 113, 558–566 (2009)CrossRefGoogle Scholar
  37. 37.
    N. Bitinis, R. Verdejo, E.M. Maya, E. Espuche, P. Cassagnau, M.A. Lopez-Manchado, Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos. Sci. Technol. 72, 305–313 (2012)CrossRefGoogle Scholar
  38. 38.
    T. Li, L.S. Turng, S. Gong, K. Erlacher, Polylactide, nanoclay, and core-shell rubber composites. Polym. Eng. Sci. 46, 1419–1427 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Bitinis, R. Verdejo, J. Bras, E. Fortunati, J.M. Kenny, L. Torre, M.A. López-Manchado, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology. Carbohydr. Polym. 96, 611–620 (2013)CrossRefGoogle Scholar
  40. 40.
    N. Bitinis, E. Fortunati, R. Verdejo, J. Bras, J.M. Kenny, L. Torre, M.A. López-Manchado, Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. part II: properties evaluation. Carbohydr. Polym. 96, 621–627 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Nano Scale Science and Technology and School of Computer Science, Engineering and MathematicsFlinders UniversityBedford ParkAustralia
  2. 2.Department of Polymer Engineering, Faculty of Chemical EngineeringUniversity Technology MalaysiaSkudaiMalaysia

Personalised recommendations