Skip to main content

Starch in Rubber Based Blends and Micro Composites

  • Chapter
  • First Online:
Rubber Based Bionanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 56))

Abstract

In this chapter, we will report the most recent investigations on modification of starch and their application as reinforcing filler in rubber composites. First, we will give a brief introduction on the characteristics of native starch, e.g., chemical structure, amylose content, morphology and crystallinity. Then, a brief review on different treatments used for starch modification, including gelatinization, plasticization, nanoparticles fabrication, and chemical grafting will be carried out. Finally, in order to prepare high performance starch reinforced rubber composites, three primary strategies reported so far, including (1) the addition of coupling agent, (2) modification of starch and (3) modification of rubber matrix will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evaluation of the Community Policy for Starch and Starch Products. Commission of the European Communities (2002)

    Google Scholar 

  2. U. Marz, World market for starches/glucose, emphasizing Cassava. Report Code: FOD037A (2006)

    Google Scholar 

  3. U. Marz, Starch/glucose: global markets. Report Code: FOD037B (2013)

    Google Scholar 

  4. A. Buléon et al., Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23(2), 85–112 (1998)

    Article  Google Scholar 

  5. D. Le Corre, J. Bras, A. Dufresne, Starch nanoparticles: a review. Biomacromolecules 11(5), 1139–1153 (2010)

    Google Scholar 

  6. K. Sriroth et al., Cassava starch granule structure–function properties: influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydr. Polym. 38(2), 161–170 (1999)

    Google Scholar 

  7. E. Nuwamanya et al., Crystalline and pasting properties of cassava starch are influenced by its molecular properties (2010)

    Google Scholar 

  8. J.N. BeMiller, R.L. Whistler (eds.), Starch: Chemistry and Technology (Academic Press, Massachusetts, 2009)

    Google Scholar 

  9. R.A. Moura, The effect of physical aging, starch particle size, and starch oxidation on thermal-mechanical properties of poly (lactic acid)/starch composites. ProQuest (2006)

    Google Scholar 

  10. A.L. Adejumo, A.F. Aderibigbe, S.K. Layokun, Cassava starch: production, physicochemical properties and hydrolysation: a review. Adv. Food Energy Secur. 2, 8–17 (2011)

    Google Scholar 

  11. R.M. McCready et al., Determination of starch and amylose in vegetables. Anal. Chem. 22(9), 1156–1158 (1950)

    Article  Google Scholar 

  12. G.K. Adkins, C.T. Greenwood, Studies on starches of high amylose-content: Part VII. Observations on the potentiometric iodine-titration of amylomaize starch. Carbohydr. Res. 3(1), 81–88 (1966)

    Article  Google Scholar 

  13. O. Paredes-Lopez, Molecular Biotechnology for Plant Food Production (CRC Press, Boca Raton, 1999)

    Google Scholar 

  14. N.W.H. Cheetham, L. Tao, Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym. 36(4), 277–284 (1998)

    Google Scholar 

  15. H. Liu, F. Xie, L. Yu, L. Chen, L. Li, Thermal processing of starch-based polymers. Prog. Polym. Sci. 34, 1348–1368 (2009)

    Article  Google Scholar 

  16. X. Liu, L. Yu, H. Liu, L. Chen, L. Lin, In situ thermal decomposition of starch with constant moisture in a sealed system. Polym. Degrad. Stab. 93, 260–262 (2008)

    Article  Google Scholar 

  17. K.J. Zeleznak, R.C. Hoseney, The glass transtion in starch. Cereal Chem. 64, 121–124 (1987)

    Google Scholar 

  18. S. Mali, L.S. Sakanaka, F. Yamashita, M.V.E. Grossmann, Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 60, 283–289 (2005)

    Article  Google Scholar 

  19. C. Van der Berg, Food water relationships: progress and integration, comments and thoughts. H. Levine, L. Slade (eds.), Water Relationships in Foods (Plenum Press, New York, 1991), pp. 21–28

    Google Scholar 

  20. http://www.lsbu.ac.uk/biology/enztech/starch.html

  21. M.A. Garcia, M.N. Martino, N.E. Zaritzky, Starch-based coatings: effect on refrigerated strawberry (Fragaria ananassa) quality. J. Sci. Food Agric. 76, 411–420 (1998)

    Article  Google Scholar 

  22. S.H. Imam, S.H. Gordon, L. Mao, L. Chen, Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polym. Degrad. Stab. 73, 529–533 (2001)

    Article  Google Scholar 

  23. Y. Wei, F. Cheng, H. Zheng, Synthesis and flocculating properties of cationic starch derivatives. Carbohydr. Polym. 74, 673–679 (2008)

    Google Scholar 

  24. J. Wu, Y. Wei, J. Lin, S. Lin, Study on starch-graft-acrylamide/mineral powder super absorbent composite. Polymer 44, 6513–6520 (2003)

    Article  Google Scholar 

  25. B.R. Pant, H.-J. Jeon, H.H. Song, Radiation cross-linked carboxymethylated starch and iron removal capacity in aqueous solution. Macromol. Res. 19, 307–312 (2011)

    Article  Google Scholar 

  26. M.-C. Li, J.K. Lee, U.R. Cho, Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. J. Appl. Polym. Sci. 125, 405–414 (2012)

    Article  Google Scholar 

  27. S.S. Wang, W.C. Chiang, B. Zhao, X.G. Zheng, I.H. Kim, Experimental analysis and computer simulation of starch-water interactions during phase transition. J. Food Sci. 56, 121–124 (1991)

    Article  Google Scholar 

  28. A. Garcia-Alonso, A. Jimenez-Escrig, N. Martin-Carroon, L. Bravoa, F. Saura-Calixto, Assessment of some parameters involved in the gelatinization and retrogration of starch. Food Chem. 66, 181–187 (1999)

    Article  Google Scholar 

  29. P.K. Herh, J.L. Kokini, The effect of pressure on the gelatinization of starch using small amplitude oscillatory measurements under pressure, in Proceeding of Institute of Food Technologies 51st Annual Meeting (1990)

    Google Scholar 

  30. J.J.G. Van Soest, K. Benes, D. De Wit, The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer 37, 3543–3552 (1996)

    Article  Google Scholar 

  31. J.J.G. Van Soest, R.C. Bezemer, D. De Wit, J.F.G. Vliegenthart, Influence of glycerol on the melting of potato starch. Ind. Crops Prod. 5, 1–9 (1996)

    Article  Google Scholar 

  32. J.J.G. Van Soest, D.B. Borger, Structure and properties of compression-molded thermoplastic starch materials from normal and high-amylose maize starches. J. Appl. Polym. Sci. 64, 631–644 (1997)

    Article  Google Scholar 

  33. K. Dean, L. Yu, D.Y. Wu, Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos. Sci. Technol. 67, 413–421 (2007)

    Article  Google Scholar 

  34. N. Wang, J. Yu, P.R. Chang, X. Ma, Influence of formamide and water on the properties of thermoplasticstarch/poly(lactic acid) blends. Carbohydr. Polym. 71, 109–118 (2008)

    Article  Google Scholar 

  35. J. Yu, J. Gao, T. Lin, Biodegradable thermoplastic starch. J. Appl. Polym. Sci. 62, 1491–1494 (1996)

    Article  Google Scholar 

  36. D. Lourdin, L. Coignard, H. Bizot, P. Colonna, Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer 38, 5401–5406 (1997)

    Article  Google Scholar 

  37. A.L.M. Smits, M. Wubbenhorst, P.H. Kruiskamp, J.J.G. van Soest, J.F.G. Vliegenthart, J. Van Turnhout, Structure evolution in amylopectin/ethylene glycol mixtures by Hbond formation and phase separation studied with dielectric relaxation spectroscopy. J. Phys. Chem. B 105, 5630–5636 (2001)

    Article  Google Scholar 

  38. A.L. Da Róz, A.J.F. Carvalho, A. Gandini, A.A.S. Curvelo, The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr. Polym. 63, 412–417 (2006)

    Article  Google Scholar 

  39. P.M. Forssell, J.M. Mikkilä, G.K. Moates, Roger Parker, Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr. Polym. 34, 275–282 (1997)

    Article  Google Scholar 

  40. A.A.S. Curvelo, A.J.F. de Carvalho, J.A.M. Agnelli, A thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr. Polym. 45, 183–188 (2001)

    Article  Google Scholar 

  41. Z. Liu, X.S. Yi, Y. Feng, Effects of glycerin and glycerol monstearate on performance of thermoplastic starch. J. Mater. Sci. 36, 1809–1815 (2001)

    Article  Google Scholar 

  42. H.-M. Park, X. Li, C.-Z. Jin, C.-Y. Park, W.-J. Cho, C.-S. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287, 553–558 (2002)

    Article  Google Scholar 

  43. H.-M. Park, W.-K. Li, C.-Y. Park, W.-J. Cho, C.-S. Ha, Environmentally friendly polymer hybrids Part I mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J. Mater. Sci. 38, 909–915 (2003)

    Article  Google Scholar 

  44. F.J. Rodriguez-Gonzalez, B.A. Ramsay, B.D. Favis, Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr. Polym. 58, 139–147 (2004)

    Article  Google Scholar 

  45. B. Chen, J.R.G. Evans, Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr. Polym. 61, 455–463 (2005)

    Article  Google Scholar 

  46. M.A. Huneault, H. Li, Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48, 270–280 (2007)

    Article  Google Scholar 

  47. R. Shi, Z. Zhang, Q. Liu, Y. Han, L. Zhang, D. Chen, W. Tian, Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr. Polym. 69, 748–755 (2007)

    Article  Google Scholar 

  48. M.-F. Huang, J.-G. Yu, X.-F. Ma, Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45, 7017–7026 (2007)

    Article  Google Scholar 

  49. L. Wang, R. Shogren, C. Carriere, Preparation and properties of thermoplastic starch–polyester laminate sheets by coextrusion. Polym. Eng. Sci. 40, 499–506 (2000)

    Article  Google Scholar 

  50. A.P. Mathew, A. Dufresne, Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3, 609–617 (2002)

    Article  Google Scholar 

  51. K. Krogars, J. Heinamaki, M. Karjalainen, A. Niskanen, M. Leskela, J. Yliruusi, Enhanced stability of rubbery amylose-rich maize starch films plasticized with a combination of sorbitol and glycerol. Int. J. Pharm. 251, 205–208 (2003)

    Article  Google Scholar 

  52. E.D.M. Teixeira, D. Pasquini, A.A.S. Curvelo, E. Corradini, M.N. Belgacem, A. Dufresne, Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr. Polym. 78, 422–431 (2009)

    Article  Google Scholar 

  53. N. Wang, J.G. Yu, X.F. Ma, Y. Wu, The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr. Polym. 67, 446–453 (2007)

    Article  Google Scholar 

  54. N. Wang, X. Zhang, N. Han, S. Bai, Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohydr. Polym. 76, 68–73 (2009)

    Article  Google Scholar 

  55. N. Wang, J. Yu, P.R. Chang, X. Ma, Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/Poly(lactic acid) blends. Starch/Starke 59, 409–417 (2007)

    Article  Google Scholar 

  56. X. Ma, P.R. Chang, J. Yu, M. Stumborg, Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr. Polym. 75, 1–8 (2009)

    Article  Google Scholar 

  57. J. Yu, N. Wang, X. Ma, The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch/Starke 59, 494–504 (2005)

    Google Scholar 

  58. X. Ma, J. Yu, The plastcizers containing amide groups for thermoplastic starch. Carbohydr. Polym. 57, 197–203 (2004)

    Article  Google Scholar 

  59. X. Ma, J. Yu, F. Jin, Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym. Int. 53, 1780–1785 (2004)

    Article  Google Scholar 

  60. X. Ma, J. Yu, Formamide as the plasticizer for thermoplastic starch. J. Appl. Polym. Sci. 93, 1769–1773 (2004)

    Article  Google Scholar 

  61. X. Ma, J. Yu, H.F. Kennedy, Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr. Polym. 62, 19–24 (2005)

    Article  Google Scholar 

  62. X. Ma, J. Yu, Studies on the properties of formamide plasticized thermoplastic starch. Acta Polym. Sin. 2, 240–245 (2004)

    Google Scholar 

  63. X. Ma, J, Yu, J. Wan, Urea and ethanolamide as a mixed plasticizer for thermoplastic starch. Carbohydr. Polym. 64, 267–273 (2006)

    Google Scholar 

  64. X. Ma, J. Yu, The effect of plasticizers containing amide groups on the properties of thermoplastic starch. Starch/starke 56, 545–551 (2004)

    Article  Google Scholar 

  65. P.S. Walia, J.W. Lawton, R.L. Shogren, F.C. Felker, Effect of moisture level on the morphology and melt flow behavior of thermoplastic starch/poly(hydroxyl ester ether) blends. Polymer 41, 8083–8093 (2000)

    Article  Google Scholar 

  66. J.L. Wilett, M.M. Millard, B.K. Jasberg, Extrusion of waxy maize starch: melt rheology and molecular weight degradation of amylopectin. Polymer 38, 5983–5989 (1997)

    Article  Google Scholar 

  67. J.J.G. Van Soest, N. Knooren, Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J. Appl. Polym. Sci. 64, 1411–1422 (1996)

    Article  Google Scholar 

  68. O. Kazuo, A. Kenji, O. Shin, T. Yoshimura, S. Rengakuji, Y. Nakamura, I. Yamazaki, S. Murotani, C. Shimasaki, Effects of the noncyclic cyanamides on the retrogradation of waxy corn starch. Bull. Chem. Soc. Japan 73, 1283–1284 (2000)

    Article  Google Scholar 

  69. X.F. Ma, J.G. Yu, J. Feng, A mixed plasticizer for preparation of thermoplastic starch. Chin. Chem. Lett. 15, 741–744 (2004)

    Google Scholar 

  70. D. Liu, Q. Wu, H. Chen, P.R. Chang, Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339, 117–124 (2009)

    Article  Google Scholar 

  71. A. Shi, D. Li, L. Wang, B. Lia, B. Adhikari, Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr. Polym. 83, 1604–1610 (2011)

    Article  Google Scholar 

  72. X. Ma, R. Jian, P.R. Chang, R. Yu, Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9, 3314–3320 (2008)

    Article  Google Scholar 

  73. Y. Tan, K. Xu, L. Li, C. Liu, C. Song, P. Wang, Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Appl. Mater. Interfaces 1, 956–959 (2009)

    Google Scholar 

  74. S. Xiao, X. Liu, C. Tong, J. Liu, D. Tang, L. Zhao, Studies of poly-L-lysine-starch nanoparticle preparation and its application as gene carrier. Sci. China, Ser. B: Chem. 48, 162–9166 (2005)

    Article  Google Scholar 

  75. D. Yu, S. Xiao, C. Tong, C. Lin, X. Liu, Dialdehyde starch nanoparticles: preparation and application in drug carrier. Chin. Sci. Bull. 52, 2913–2918 (2007)

    Article  Google Scholar 

  76. S.F. Chin, S.C. Pang, S.H. Tay, Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 86, 1817–1819 (2011)

    Article  Google Scholar 

  77. L. Jayakody, R. Hoover, The effect of lintnerization on cereal starch granules. Food Res. Int. 35, 665–680 (2002)

    Article  Google Scholar 

  78. Y.-J. Wang, V.-D. Truong, L. Wang, Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch/Starke 53, 570–576 (2001)

    Article  Google Scholar 

  79. D.L. Corre, J. Bras, A. Dufresne, Starch nanoparticles: a review. Biomacromolecules 11, 1139–1153 (2010)

    Article  Google Scholar 

  80. D. LeCorre, J. Bras, A. Dufresne, Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanopart. Res. 13, 7193–7208 (2011)

    Article  Google Scholar 

  81. V. Singn, S.Z. Ali, Comparative acid modification of various starches. Starch/Starke 39, 402–405 (1987)

    Article  Google Scholar 

  82. H. Angellier, L. Choisnard, S. Molina-Boisseau, P. Ozil, A. Dufresne, Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5, 1545–1551 (2004)

    Article  Google Scholar 

  83. D.L. Corre, J. Bras, L. Choisnard, A. Dufresne, Optimization of the batch preparation of starch nanocrystals to reach daily time-scale. Starch/Starke 64, 489–496 (2012)

    Article  Google Scholar 

  84. Y. Chen, C. Liu, R.P. Chang, X. Cao, D.P. Anderson, Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr. Polym. 76, 607–615 (2009)

    Article  Google Scholar 

  85. V. Sigh, S.Z. Ali, Acid degradation of starch. The effect of acid and starch type. Carbohydr. Polym. 41, 191–195 (2000)

    Article  Google Scholar 

  86. V. Sigh, S.Z. Ali, Properties of starches modified by different acids. Int. J. Food Prop. 11, 495–507 (2008)

    Article  Google Scholar 

  87. M.B. Tasic, B.V. Konstantinovic, M.L. Lazic, V.B. Veljkovic, The acidhydrolysis of potato tuber mash in bioethanol production. Biochem. Eng. J. 43, 208–211 (2009)

    Article  Google Scholar 

  88. Y.-J. Wang, V.-D. Truong, L. Wang, Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 52, 327–333 (2003)

    Article  Google Scholar 

  89. D. LeCorre, E. Vahanian, A. Dufresne, J. Bras, Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13, 132–137 (2012)

    Article  Google Scholar 

  90. C.E. Brockway, Efficiency and frequency of grafting of methyl methacrylate to granular corn starch. J. Polym. Sci. part A: Gen. Pap. 2, 3721–3731 (1964)

    Google Scholar 

  91. P. Ghosh, S.K. Paul, Photograft copolymerization of methyl methacrylate on potato starch using potassium pervanadate as initiator. J. Macromol. Sci. part A Chem. 20, 261–269 (1983)

    Article  Google Scholar 

  92. L. Nurmi, S. Holappa, N. Mikkonen, J. Seppala, Controlled grafting of acetylated starch by atom transfer radical polymerization of MMA. Eur. Polym. J. 43, 1372–1382 (2007)

    Article  Google Scholar 

  93. V. Pimpan, P. Thothong, Synthesis of cassava starch-g-poly(methyl methacrylate) copolymers with benzoyl peroxide as an initiator. J. Appl. Polym. Sci. 101, 4083–4089 (2006)

    Article  Google Scholar 

  94. B.N. Misra, R. Dogra, Grafting onto Starch. IV. Graft copolymerization of methyl methacrylate by use of AIBN as radical initiator. J. Macromol. Sci. Part A Chem. 14, 763–770 (1980)

    Article  Google Scholar 

  95. F.E. Okieimen, O.B. Said, Studies on the graft copolymerization of methyl methacrylate onto starch. Acta Polym. 40, 708–710 (1989)

    Article  Google Scholar 

  96. J.-P. Gao, R.-C. Tian, J.-G. Yu, M.-L. Duan, Graft copolymers of methy methacrylate onto canna starch using manganic pyrophosphate as an initiator. J. Appl. Polym. Sci. 53, 1091–1102 (1994)

    Article  Google Scholar 

  97. G.F. Fanta, R.C. Burr, W.M. Doana, C.R. Russell, Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation. J. Appl. Polym. Sci. 21, 425–433 (1977)

    Article  Google Scholar 

  98. K. Kaewtatip, V. Tanrattanakul, Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohydr. Polym. 73, 647–655 (2008)

    Article  Google Scholar 

  99. C.G. Cho, K. Lee, Preparation of starch-g-polystyrene copolymer by emulsion polymerization. Carbohydr. Polym. 48, 125–130 (2002)

    Article  Google Scholar 

  100. S. Kitkamjornwong, M. Sonsuk, S. Wittayapichet, P. Prasassarakich, P.-C. Vejjanukroh, Degradation of styrene-g-cassava starch filled polystyrene plastics. Polym. Degrad. Stab. 66, 323–335 (1999)

    Article  Google Scholar 

  101. J.M. Fang, P.A. Fowler, C.A.S. Hill, Studies on the grafting of acryloylated potato starch with styrene. J. Appl. Polym. Sci. 96, 452–459 (2005)

    Article  Google Scholar 

  102. R.A. De Graaf, L.P.B.M. Janssen, The production of a new partially biodegradable starch plastic by reactive extrusion. Polym. Eng. Sci. 40, 2086–2094 (2000)

    Article  Google Scholar 

  103. P. Liu, Z. Su, Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butylacrylate from starch granules. Carbohydr. Polym. 62, 159–163 (2005)

    Article  Google Scholar 

  104. M.B. Vazquez, I. Goni, M. Gurruchaga, M. Valero, G.M. Guzman, Graft polymerization of acrylic monomers onto starch fractions. IV. Effect of reaction time on the grafting of butyl acrylate onto amylose. J. Polym. Sci., Part A: Polym. Chem. 25, 719–725 (1987)

    Article  Google Scholar 

  105. C. Liu, Y. Shao, D. Jia, Chemically modified starch reinforced natural rubber composites. Polymer 49, 2176–2181 (2008)

    Article  Google Scholar 

  106. M. Zhai, F. Yoshhii, T. Kume, K. Hashim, Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr. Polym. 50, 295–303 (2002)

    Article  Google Scholar 

  107. M. Zhai, F. Yoshhii, K. Hashim, Radiation modification of starch-based plastic sheets. Carbohydr. Polym. 52, 311–317 (2003)

    Article  Google Scholar 

  108. Z. Zhu, R. Zhui, Slow release behavior of starch-g-poly (vinylalcohol) matrix for 2,4,5-trichlorophenoxyacetic acid herbicide. Eur. Polym. J. 37, 1913–1919 (2001)

    Article  Google Scholar 

  109. M.K. Beliakova, A.A. Aly, F.A. Abdel-Mohdy, Grafting of poly (methacrylic acid) on starch and poly (vinyl alcohol). Starch-Starke 56, 407–412 (2004)

    Article  Google Scholar 

  110. V.D. Athawale, S.C. Rathi, Syntheses and characterization of starch-poly(methacrylic acid) graft copolymers. J. Appl. Polym. Sci. 66, 1399–1403 (1997)

    Article  Google Scholar 

  111. M.I. Khalil, K.H. Mostafa, A. Hebeish, Synthesis of poly(methacrylic acid-)starch graft copolymers using Mn-IV-acid system. Starch-Starke 42, 107–111 (1990)

    Article  Google Scholar 

  112. K.M. Mostafa, Graft polymerization of methacrylic acid on starch and hydrolyzed starches. Polym. Degrad. Stab. 50, 189–194 (1995)

    Article  Google Scholar 

  113. V.D. Athawale, V. Lele, Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr. Polym. 35, 21–27 (1998)

    Article  Google Scholar 

  114. Q.-Z. Yan, W.-F. Zhang, G,-D, Lu, X,-T, Su, C.-C. Ge, Frontal copolymerization synthesis and property characterization of starch-graft-poly(acrylic acid) hydrogels. Chem. Eur. J. 11, 6609–6615 (2005)

    Google Scholar 

  115. S. Kiatkamjornwong, W. Chomsaksakul, M. Sonsukc, Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Phys. Chem. 59, 413–427 (2000)

    Article  Google Scholar 

  116. E. Al, G. Guclu, T.B. Iyim, S. Emik, S. Ozgumus, Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. J. Appl. Polym. Sci. 109, 16–22 (2008)

    Article  Google Scholar 

  117. K.M. Mostafa, Graft polymerization of acrylic acid onto starch using potassium permanganate acid (redox system). J. Appl. Polym. Sci. 56, 263–269 (1995)

    Article  Google Scholar 

  118. V.D. Athawale, V. Lele, Recent trends in hydrogels based on starchgraft-acrylic acid: a review. Starch-Starke 53, 7–13 (2001)

    Article  Google Scholar 

  119. S.E. Abdel-Aal, Y.H. Gad, A.M. Dessouki, Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater. J. Hazard. Mater. 129, 204–215 (2006)

    Article  Google Scholar 

  120. G.F. Fanta, R.C. Burr, C.R. Russell, C.E. Rist, Graft copolymers of starch. I. Copolymerization of gelatinized wheat starch with acrylonitrile. Fractionation of copolymer and effect of solvent on copolymer composition. J. Appl. Polym. Sci. 10, 929–937 (1966)

    Article  Google Scholar 

  121. G.F. Fanta, R.C. Burr, C.R. Russell, C.E. Rist, Graft copolymers of starch. II. Copolymerization of gelatinized wheat starch with acrylonitrile: influence of reaction conditions on copolymer composition. J. Polym. Sci. Part B: Polym. Lett. 4, 765–769 (1966)

    Google Scholar 

  122. G.F. Fanta, R.C. Burr, C.R. Russell, C.E. Rist, Graft copolymers of starch. III. Copolymerization of gelatinized wheat starch with acrylonitrile. influence of chain modifiers on copolymer composition. J. Appl. Polym. Sci. 11, 457–463 (1967)

    Article  Google Scholar 

  123. G.F. Fanta, R.C. Burr, C.R. Russell, C.E. Rist, Copolymers of starch and polyacrylonitrile: the dilution effect. J. Appl. Polym. Sci. 13, 133–140 (1969)

    Article  Google Scholar 

  124. R. Mehrotra, B. Ranby, Graft copolymerization onto starch. I. Complexes of Mn3+ as initiators. J. Appl. Polym. Sci. 21, 1647–1654 (1977)

    Article  Google Scholar 

  125. R. Mehrotra, B. Ranby, Graft copolymerization onto starch. II. Grafting of acrylonitrile to granular native potato starch by manganic pyrophosphate initiation. Effect of reaction conditions on grafting parameters. J. Appl. Polym. Sci. 21, 3407–3415 (1977)

    Article  Google Scholar 

  126. R. Mehrotra, B. Ranby, Graft copolymerization onto starch. III. Grafting of acrylonitrile to gelatinized potato starch by manganic pyrophosphate initiation. J. Appl. Polym. Sci. 22, 2991–3001 (1978)

    Article  Google Scholar 

  127. M. Tahan, A. Zikha, Alkali metal alkoxide derivatives of starch and dextrin as initiators of graft polymerization of methacrylonitrile. Eur. Polym. J. 5, 347–359 (1969)

    Article  Google Scholar 

  128. B. Vazquez, I. Goni, M. Gurruchaga, M. Valero, G. Martin, Guzman, Synthesis and characterization of graft copolymers of methacrylonitrile/methacrylate mixtures onto amylomaize by the ceric ion method. J. Polym. Sci., Part A: Polym. Chem. 30, 1542–1548 (1992)

    Article  Google Scholar 

  129. V.D. Athawale, V. Lele, Thermal studies on granular maize starch and its graft copolymers with vinyl monomers. Starch-Starke 52, 205–213 (2000)

    Article  Google Scholar 

  130. K. Mostafa, M. Morsy, Modification of carbohydrate polymers via grafting of methacrylonitrile onto pregelled starch using potassium monopersulfate/Fe2+ redox pair. Polym. Int. 53, 885–890 (2004)

    Article  Google Scholar 

  131. V.D. Athawale, V. Lele, Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile. Carbohydr. Polym. 41, 407–416 (2000)

    Article  Google Scholar 

  132. G.F. Fanta, R.C. Burr, W.M. Doane, C.R. Russell, Graft polymerization of vinyl acetate onto starch. Saponification to starch–g–poly(vinyl alcohol). J. Appl. Polym. Sci. 23, 229–240 (1979)

    Article  Google Scholar 

  133. B.N. Misra, R. Dogra, I. Kaur, D. Sood, Grafting onto starch. II. Graft copolymerization of vinyl acetate onto starch by radical initiator. J. Polym. Sci.: Polym. Chem. Edn. 18, 341–344 (1980)

    Google Scholar 

  134. G.F. Fanta, D. Trimnell, J.H. Salch, Graft polymerization of methyl acrylate–vinyl acetate mixtures onto starch. J. Appl. Polym. Sci. 49, 1679–1682 (1993)

    Article  Google Scholar 

  135. J. Huang, H.A. Schols, Z. Jin, E. Sulmann, A.G.J. Voragen, Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinylacetate. Carbohydr. Polym. 67, 11–20 (2007)

    Article  Google Scholar 

  136. W.-C. Chan, C.-Y. Chiang, Flocculation of clay suspensions with water-insoluble starch grafting acrylamide/sodium allylsulfonated copolymer powder. J. Appl. Polym. Sci. 58, 1721–1726 (1995)

    Article  Google Scholar 

  137. J. Zhang, A. Li, A. Wang, Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohydr. Polym. 65, 150–158 (2006)

    Article  Google Scholar 

  138. G.-X. Chen, H. Geng, L. Luo, B. Wu, Q.F. Li, Synthesis and properties of starch-grafted polystyrene-maleic anhydride copolymer. J. Appl. Polym. Sci. 126, E109–E115 (2012)

    Article  Google Scholar 

  139. G. Mino, S. Kaizerman, A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J. Appl. Polym. Sci. 31, 242–243 (1958)

    Article  Google Scholar 

  140. G. Sen, R. Kumar, S. Ghosh, S. Pal, A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydr. Polym. 77, 822–831 (2009)

    Article  Google Scholar 

  141. Y. Wei, F. Cheng, H. Zheng, Synthesis and flocculating properties of cationic starch derivatives. Carbohydr. Polym. 74, 673–679 (2008)

    Article  Google Scholar 

  142. C. Wang, X. Li, J. Chen, G. Fei, H. Wang, Q. Liu, Synthesis and characterization of polyacrylonitrile pregelled starch graft copolymers using ferrous sulfate-hydrogen peroxide redox initiation system as surface szing agent. J. Appl. Polym. Sci. 122, 2630–2638 (2011)

    Article  Google Scholar 

  143. A.N. Jyothi, Starch graft copolymers: novel application in industry. Compos. Interfaces 17, 165–174 (2010)

    Article  Google Scholar 

  144. S.C. Kiing, K. Dzulkefly, P.H. Yiu, Characterization of biodegradable polymer blends of acetylated and hydroxypropylated sago starch and natural rubber. J. Polym. Environ. 21, 995–1001 (2013)

    Article  Google Scholar 

  145. M.M. Afiq, A.R. Azura, Effect of sago starch loadings on soil decomposition of Natural Rubber Latex (NRL) composite films mechanical properties. Int. Biodeterior. Biodegradation 85, 139–149 (2013)

    Article  Google Scholar 

  146. A.I. Khalaf, E.M. Sadek, Compatibility study in natural rubber and maize starch blends. J. Appl. Polym. Sci. 125, 959–967 (2012)

    Article  Google Scholar 

  147. Y.P. Wu, M.Q. Ji, Q. Qi, Y.Q. Wang, L.Q. Zhang, Preparation, structure and properties of starch/rubber composites prepared by co-coagulating rubber latex and starch paste. Macromol. Rapid Commun. 25, 565–571 (2004)

    Article  Google Scholar 

  148. F.G. Corvasce, T.D. Linster, G. Thielen, U.S. Patent 5,672,639 (1997)

    Google Scholar 

  149. A.J.F. Carvalho, A.E. Job, N. Alves, A.A.S. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)

    Article  Google Scholar 

  150. Y.P. Wu, Q. Qi, G.H. Liang, L.Q. Zhang, A strategy to prepare high performance starch/rubber composites: in situ modification during latex compounding process. Carbohydr. Polym. 65, 109–113 (2006)

    Article  Google Scholar 

  151. H. Tang, Q. Qi, Y. Wu, G. Liang, L. Zhang, J. Ma, Reinforcement of elastomer by starch. Macromol. Mater. Eng. 291, 629–637 (2006)

    Article  Google Scholar 

  152. Q. Qi, Y. Wu, M. Tian, G. Liang, L. Zhang, M. Jun, Modification of starch for high performance elastomer. Polymer 47, 3896–3903 (2006)

    Article  Google Scholar 

  153. M.C. Li, X. Ge, U.R. Cho, Effectiveness of coupling agents in the poly (methyl methacrylate)-modified starch/styrene-butadiene rubber interfaces. Mater. Lett. 92, 132–135 (2013)

    Article  Google Scholar 

  154. R.A. Buchanan, O.E. Weislogel, C.R. Russell, C.E. Rist, Starch in rubber. Zinc starch xanthate in latex masterbatching. Ind. Eng. Chem. Prod. Res. Dev. 7, 155–158 (1968)

    Article  Google Scholar 

  155. Z.F. Wang, Z. Peng, S.D. Li, H. Lin, K.X. Zhang, X.D. She, X. Fu, The impact of esterification on the properties of starch/natural rubber composites. Compos. Sci. Technol. 69, 1797–1803 (2009)

    Article  Google Scholar 

  156. M.C. Li, X. Ge, U.R. Cho, Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol.  Res. 21, 519–528 (2013)

    Article  Google Scholar 

  157. M.C. Li, U.R. Cho, Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR biocomposites. Macromol. Res. 21, 793–800 (2013)

    Article  Google Scholar 

  158. H. Angellier, S. Molina-Boisseau, A. Dufresne, Processing and structure properties of waxy-maize starch nanocrystal reinforced natural rubber. Macromolecules 38, 3783–3792 (2005)

    Article  Google Scholar 

  159. H. Angellier, S. Molina-Boisseau, A. Dufresne, Mechanical properties of waxy-maize starch nanocrystal reinforced natural rubber. Macromolecules 38, 9161–9170 (2005)

    Article  Google Scholar 

  160. K.R. Rajisha, H.J. Maria, L.A. Pothan, Z. Ahmad, S. Thomas, Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int. J. Biol. Macromol. 67, 147–153 (2014)

    Article  Google Scholar 

  161. P. Mele, S. Molina-Boisseau, A. Dufresne, Reinforcing mechanisms of starch nanocrystals in a nonvulcanized natural rubber matrix. Biomacromocules 12, 1487–1493 (2011)

    Article  Google Scholar 

  162. D. LeCorre, J, Bras, A. Dufresne, Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromolecular Mater. Eng. Doi:10.1002/mame.201100317

  163. E. Bouthegourd, K.R. Rajisha, N. Kalarical, J.M. Saiter, S. Thomas, Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater. Lett. 65, 3615–3617 (2011)

    Article  Google Scholar 

  164. M. Valodkar, S. Thakore, Organically modified nanosized starch derivatives as excellent reinforcing agents for bionanocomposites. Carbohydr. Polym. 86, 1244–1251 (2011)

    Article  Google Scholar 

  165. A. Rouilly, L. Rigal, R.G. Gillbert, Synthesis and properties of composites of starch and chemically modified natural rubber. Polymer 45, 7813–7820 (2004)

    Article  Google Scholar 

  166. C. Nakason, A. Kaesaman, S. Homsin, S. Kiatkamjonwong, Rheological and curing behavior of reactive blending. I. Natural rubber-g-poly(methyl methacrylate)-cassava starch. J. Appl. Polym. Sci. 89, 1453–1463 (2003)

    Article  Google Scholar 

  167. C. Nakason, A. Kaesaman, A. Rungvichaniwat, K. Eardrod, S. Kiatkamjonwong, Rheological and curing behavior of reactive blending. II. Maleated natural rubber-cassava starch. J. Appl. Polym. Sci. 81, 2803–2813 (2001)

    Article  Google Scholar 

  168. C. Nakason, A. Kaesaman, K. Eardrod, Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)—cassava starch compounds. Mater. Lett. 59, 4020–4025 (2005)

    Article  Google Scholar 

  169. M.M. Senna, R.M. Mohamed, A.N. Shehab-Eldin, S. El-Hamouly, Characterization of electron beam irradiated natural rubber/modified starch composites. J. Ind. Eng. Chem. 18, 1654–1661 (2013)

    Article  Google Scholar 

  170. Z.X. Ooi, H. Ismail, A.A. Bakar, Optimisation of oil palm ash as reinforcement in natural rubber vulcanisation: a comparison between silica and carbon black fillers. Polym. Test. 32, 625–630 (2013)

    Article  Google Scholar 

  171. R. Rajasekar, G.C. Nayak, A. Malas, S. Sahoo, C.K. Das, Effect of dual fillers on the properties of acrylonitrile butadiene rubber nanocomposites in presence of compatibilizer. Elastomery 15, 3–13 (2011)

    Google Scholar 

  172. T.V. Varghese, H.A. Kumar, S. Anitha, S. Ratheesh, R.S. Rajeev, R.V. Lakshmana Rao, Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers. Carbon 61, 476–486 (2013)

    Google Scholar 

  173. S. Attharangsan, H. Ismail, M.A. Bakar, J. Ismail, Carbon black (CB)/rice husk powder (RHP) hybrid filler-filled natural rubber composites: effect of CB/RHP ratio on property of the composites. Polym.-Plast. Technol. Eng. 51(7), 655–662 (2012)

    Article  Google Scholar 

  174. Y.P. Wu, G.H. Liang, L.Q. Zhang, Influence of starch on the properties of carbon black filled styrene—butadiene rubber composites. J. Appl. Polym. Sci. 114(4), 2254–2260 (2009)

    Article  Google Scholar 

  175. M.-S. Kim, U.R. Cho, Manufacture and properties of PMMA grafted starch/carbon black/NBR composites. Polymer (Korea) 37, 764–769 (2013)

    Article  Google Scholar 

  176. B. Pradhan, S.K. Srivastava, Layered double hydroxide/multiwalled carbon nanotube hybrids as reinforcing filler in silicone rubber. Compos. A Appl. Sci. Manuf. 56, 290–299 (2014)

    Article  Google Scholar 

  177. B. Pradhan, S.K. Srivastava, Synergistic effect of three-dimensional multiwalled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high performance silicone rubber. Polym. Int. (2013)

    Google Scholar 

  178. Y. Zhang, Q. Zhang, Q. Liu, H. Cheng, R.L. Frost, Thermal stability of styrene butadiene rubber (SBR) composites filled with kaolinite/silica hybrid filler. J. Therm. Anal. Calorim. 115(2), 1013–1020 (2014)

    Article  Google Scholar 

  179. J. Wang, H. Jia, L. Ding, L. Zhu, X. Dai, X. Fei, F. Li, X. Gong, Utilization of silane functionalized carbon nanotubes-silica hybrids as novel reinforcing fillers for solution styrene butadiene rubber. Polym. Compos. 34(5), 690–696 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Chun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, MC., Cho, U.R. (2017). Starch in Rubber Based Blends and Micro Composites. In: Visakh P. M. (eds) Rubber Based Bionanocomposites. Advanced Structured Materials, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-48806-6_6

Download citation

Publish with us

Policies and ethics