Advertisement

Chitin in Rubber Based Blends and Micro Composites

  • Jingjing Qiu
  • Jilong Wang
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 56)

Abstract

The rubber based composites have inspired tremendous research interests due to unique mechanical properties. This chapter presents a brief introduction on chitin and their rubber based blends and micro composites. A concise literature review is introduced including rubber based composites, chitin and its derivatives. In addition, a comprehensive overview of rubber based blends and micro composites and their basic properties have been discussed. Three fabrication methods have been mainly summarized consisting of two roll mill mixing, latex compounding and freeze drying method. Furthermore, the challenges and perspectives in the near future are also discussed.

Keywords

Chitin Rubber Blend Micro composite roll mixing Latex compounding Freeze drying 

References

  1. 1.
    A.D. Roberts, Natural Rubber Science and Technology (Oxford University Press, Oxford, 1988)Google Scholar
  2. 2.
    W. Hofmann, Rubber Technology Handbook: Hanser Publishers. Distributed in the USA by Oxford University Press, Oxford (1989)Google Scholar
  3. 3.
    L. Yan, D.A. Dillard, R.L. West, L.D. Lower, G.V. Gordon, Mullins effect recovery of a nanoparticle-filled polymer. J. Polym. Sci. Pol. Phys. 48(21), 2207–2214 (2010)CrossRefGoogle Scholar
  4. 4.
    J.E. Mark, R. Abou-Hussein, T.Z. Sen, A. Kloczkowski, Monte Carlo simulations on nanoparticles in elastomers. Effects of the particles on the dimensions of the polymer chains and the mechanical properties of the networks, in Macromol Symposium, vol. 256 (2007), pp. 40–47Google Scholar
  5. 5.
    V.G. Geethamma, L.A. Pothen, B. Rhao, N.R. Neelakantan, S. Thomas, Tensile stress relaxation of short-coir-fiber-reinforced natural rubber composites. J. Appl. Polym. Sci. 94(1), 96–104 (2004)CrossRefGoogle Scholar
  6. 6.
    V.G. Geethamma, G. Kalaprasad, G. Groeninckx, S. Thomas, Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. A Appl. Sci. Manuf. 36(11), 1499–1506 (2005)CrossRefGoogle Scholar
  7. 7.
    V.G. Geethamma, S. Thomas, Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polym. Compos. 26(2), 136–143 (2005)CrossRefGoogle Scholar
  8. 8.
    D.E. El Nashar, S.L. Abd-el-Messieh, A.H. Basta, Newsprint paper waste as a fiber reinforcement in rubber composites. J. Appl. Polym. Sci. 91(5), 3410–3420 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Dufresne, Cellulose-based composites and nanocomposites. Monomers Polym. Compos. Renew. Resour. 401–418 (2008)Google Scholar
  10. 10.
    A Dufresne, in Cellulose-Based Composites and Nanocomposites. Pdl Handbook Series (2013), pp. 153–169Google Scholar
  11. 11.
    Z. Zhou, J.L. Wang, X. Huang, L.W. Zhang, S. Moyo, S.Y. Sun et al., Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers. Appl. Surf. Sci. 258(10), 4411–4416 (2012)CrossRefGoogle Scholar
  12. 12.
    J.L. Wang, Z. Zhou, X. Huang, L.W. Zhang, B.T. Hu, S. Moyo et al., Effect of alcohol pretreatment in conjunction with atmospheric pressure plasmas on hydrophobizing ramie fiber surfaces. J. Adhes. Sci. Technol. 27(11), 1278–1288 (2013)CrossRefGoogle Scholar
  13. 13.
    Z. Zhou, X.C. Liu, B.T. Hu, J.L. Wang, D.W. Xin, Z.J. Wang et al., Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment. Surf. Coat. Tech. 205(17–18), 4205–4210 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Yoshioka, N. Hagiwara, N. Shiraishi, Thermoplasticization of cellulose acetates by grafting of cyclic esters. Cellulose 6(3), 193–212 (1999)CrossRefGoogle Scholar
  15. 15.
    B. Rodgers, W.H. Waddell, S. Solis, W. Klingensmith, Rubber Compounding (Wiley Online Library, 2004)Google Scholar
  16. 16.
    P.K. Freakley, Rubber Processing and Production Organization (Springer Science & Business Media, 2012)Google Scholar
  17. 17.
    P. Visakh, S. Thomas, A.K. Chandra, A.P. Mathew, Advances in Elastomers (Springer, Berlin, 2013)Google Scholar
  18. 18.
    K.G. Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3), 657–665 (2003)CrossRefGoogle Scholar
  19. 19.
    K.G. Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3), 666–674 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Valodkar, S.I. Thakore, Biopolymers as effective fillers in natural rubber: composites versus biocomposites. J. Appl. Polym. Sci. 124(5), 3815–3820 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Dufresne, J.Y. Cavaille, W. Helbert, New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29(23), 7624–7626 (1996)CrossRefGoogle Scholar
  22. 22.
    W. Helbert, J.Y. Cavaille, A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers.1. Processing and mechanical behavior. Polym Compos. 17(4), 604–611 (1996)Google Scholar
  23. 23.
    M.R. Kasaai, Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review. J. Agr. Food Chem. 57(5), 1667–1676 (2009)CrossRefGoogle Scholar
  24. 24.
    C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009)CrossRefGoogle Scholar
  25. 25.
    M.N.V.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)CrossRefGoogle Scholar
  26. 26.
    L. Gorovoj, L. Burdukova, Chitin produced from fungi: medicine application perspective. Adv. Chitin Sci. 1, 430–439 (1996)Google Scholar
  27. 27.
    D. Knorr, Use of chitinous polymers in food—a challenge for food research and development. Food Technol-Chicago 38(1), 85–& (1984)Google Scholar
  28. 28.
    R. Muzzarelli, Chitin (Pergamon Press, Oxford, 1977)Google Scholar
  29. 29.
    A. George, F. Roberts, Chitin Chemistry (The Macmillan Press Ltd., London, 1992), pp. 249–267Google Scholar
  30. 30.
    G. Mayer, M. Sarikaya, Rigid biological composite materials: structural examples for biomimetic design. Exp. Mech. 42(4), 395–403 (2002)CrossRefGoogle Scholar
  31. 31.
    Z.Y. Guo, R.E. Xing, S. Liu, Z.M. Zhong, X. Ji, L. Wang et al., The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohyd. Polym. 71(4), 694–697 (2008)CrossRefGoogle Scholar
  32. 32.
    H.F. Zhang, L.L. Niu, X.H. Yang, L. Li, Analysis of water-soluble polysaccharides in an edible medicinal plant Epimedium: method development, validation, and application. J. AOAC Int. 97(3), 784–790 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Rinaudo, Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57(3), 397–430 (2008)CrossRefGoogle Scholar
  34. 34.
    D. Raabe, A. Al-Sawalmih, S.B. Yi, H. Fabritius, Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater. 3(6), 882–895 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Rudall, W. Kenchington, The chitin system. Biol. Rev. 48(4), 597–633 (1973)CrossRefGoogle Scholar
  36. 36.
    K.M. Paralikar, R.H. Balasubramanya, Electron-diffraction study of alpha-chitin. J. Polym. Sci. Pol. Lett. 22(10), 543–546 (1984)CrossRefGoogle Scholar
  37. 37.
    E. Atkins, Conformations in polysaccharides and complex carbohydrates. J. Biosci. 8(1–2), 375–387 (1985)CrossRefGoogle Scholar
  38. 38.
    A. Hirai, H. Odani, A. Nakajima, Determination of degree of deacetylation of chitosan by H-1-NMR spectroscopy. Polym. Bull. 26(1), 87–94 (1991)CrossRefGoogle Scholar
  39. 39.
    R. Signini, S.P. Campana, On the preparation and characterization of chitosan hydrochloride. Polym. Bull. 42(2), 159–166 (1999)CrossRefGoogle Scholar
  40. 40.
    Y. Shigemasa, H. Matsuura, H. Sashiwa, H. Saimoto, Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int. J. Biol. Macromol. 18(3), 237–242 (1996)CrossRefGoogle Scholar
  41. 41.
    L. Heux, J. Brugnerotto, J. Desbrieres, M.F. Versali, M. Rinaudo, Solid state NMR for determination of degree of acetylation of chitin and chitosan. Biomacromolecules 1(4), 746–751 (2000)CrossRefGoogle Scholar
  42. 42.
    L. Raymond, F.G. Morin, R.H. Marchessault, Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohyd. Res. 246, 331–336 (1993)CrossRefGoogle Scholar
  43. 43.
    M.G. Peter, L. Grun, H. Forster, Cp/Mas-C-13-NMR spectra of sclerotized insect cuticle and of chitin. Angew. Chem. Int. Ed. 23(8), 638–639 (1984)CrossRefGoogle Scholar
  44. 44.
    M.L. Duarte, M.C. Ferreira, M.R. Marvao, J. Rocha, An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 31(1–3), 1–8 (2002)CrossRefGoogle Scholar
  45. 45.
    T. Sannan, K. Kurita, K. Ogura, Y. Iwakura, Studies on chitin. 7. LR spectroscopic determination of degree of deacetylation. Polymer 19(4), 458–459 (1978)CrossRefGoogle Scholar
  46. 46.
    R.A.A. Muzzarelli, R. Rocchetti, Determination of the degree of acetylation of chitosans by 1st derivative ultraviolet spectrophotometry. Carbohyd. Polym. 5(6), 461–472 (1985)CrossRefGoogle Scholar
  47. 47.
    H. Terayama, Method of colloid titration (a new titration between polymer ions). J. Polym. Sci. 8(2), 243–253 (1952)CrossRefGoogle Scholar
  48. 48.
    S.S. Kim, S.H. Kim, Y.M. Lee, Preparation, characterization, and properties of beta-chitin and N-acetylated beta-chitin. J. Polym. Sci. Pol. Phys. 34(14), 2367–2374 (1996)CrossRefGoogle Scholar
  49. 49.
    L.S. Guinesi, E.T.G. Cavalheiro, The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta 444(2), 128–133 (2006)CrossRefGoogle Scholar
  50. 50.
    F. Niola, N. Basora, E. Chornet, P.F. Vidal, A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid-hydrolysis and HPLC. Carbohyd. Res. 238, 1–9 (1993)CrossRefGoogle Scholar
  51. 51.
    F. Nanjo, R. Katsumi, K. Sakai, Enzymatic method for determination of the degree of deacetylation of chitosan. Anal. Biochem. 193(2), 164–167 (1991)CrossRefGoogle Scholar
  52. 52.
    K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, M.A. Sheikh, Molecular engineering of chitin based polyurethane elastomers. Carbohyd. Polym. 74(2), 149–158 (2008)CrossRefGoogle Scholar
  53. 53.
    M. Barikani, H. Honarkar, M. Barikani, Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatsh. Chem. 141(6), 653–659 (2010)CrossRefGoogle Scholar
  54. 54.
    V. Rao, J. Johns, Thermal behavior of chitosan/natural rubber latex blends—TG and DSC analysis. J. Therm. Anal. Calorim. 92(3), 801–806 (2008)CrossRefGoogle Scholar
  55. 55.
    M. Barikani, H. Honarkar, M. Barikani, Synthesis and characterization of polyurethane elastomers based on chitosan and poly(epsilon-caprolactone). J. Appl. Polym. Sci. 112(5), 3157–3165 (2009)CrossRefGoogle Scholar
  56. 56.
    J.L. White, Rubber Processing: Technology, Materials, Principles (Hanser Verlag, 1995)Google Scholar
  57. 57.
    L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford University Press, 1975)Google Scholar
  58. 58.
    C. Tsenoglou, Rubber elasticity of cross-linked networks with trapped entanglements and dangling chains. Macromolecules 22(1), 284–289 (1989)CrossRefGoogle Scholar
  59. 59.
    D. Adolf, Origins of entanglement effects in rubber elasticity. Macromolecules 21(1), 228–230 (1988)CrossRefGoogle Scholar
  60. 60.
    M. Negahban, Modeling the thermomechanical effects of crystallization in natural rubber: I. The theoretical structure. Int. J. Solids Struct. 37(20), 2777–2789 (2000)CrossRefGoogle Scholar
  61. 61.
    F. Yatsuyanagi, N. Suzuki, M. Ito, H. Kaidou, Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 42(23), 9523–9529 (2001)CrossRefGoogle Scholar
  62. 62.
    H. Ismail, S.M. Shaari, N. Othman, The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test. 30(7), 784–790 (2011)CrossRefGoogle Scholar
  63. 63.
    B.T. Poh, H. Ismail, K.S. Tan, Effect of filler loading on tensile and tear properties of SMR L/ENR 25 and SMR L/SBR blends cured via a semi-efficient vulcanization system. Polym. Test. 21(7), 801–806 (2002)CrossRefGoogle Scholar
  64. 64.
    H. Ismail, F.S. Haw, Effects of palm ash loading and maleated natural rubber as a coupling agent on the properties of palm-ash-filled natural rubber composites. J. Appl. Polym. Sci. 110(5), 2867–2876 (2008)CrossRefGoogle Scholar
  65. 65.
    M. Mincea, A. Negrulescu, V. Ostafe, Preparation, modification, and applications of chitin nanowhiskers: a review. Rev. Adv. Mater. Sci. 30(3), 225–242 (2012)Google Scholar
  66. 66.
    J. Johns, V. Rao, Studies on the interfacial interaction in natural rubber latex/chitosan blends. J. Adhes. Sci. Technol. 26(6), 793–812 (2012)Google Scholar
  67. 67.
    J. Johns, V. Rao, Adsorption of methylene blue onto natural rubber/chitosan blends. Int. J. Polym. Mater. 60(10), 766–775 (2011)CrossRefGoogle Scholar
  68. 68.
    J. Johns, V. Rao, Mechanical properties of MA compatibilised NR/CS blends. Fiber Polym. 10(6), 761–767 (2009)CrossRefGoogle Scholar
  69. 69.
    J. Johns, V. Rao, Thermal stability, morphology, and X-ray diffraction studies of dynamically vulcanized natural rubber/chitosan blends. J. Mater. Sci. 44(15), 4087–4094 (2009)CrossRefGoogle Scholar
  70. 70.
    J. Johns, V. Rao, Mechanical properties and swelling behavior of cross-linked natural rubber/chitosan blends. Int. J. Polym. Anal. Charact. 14(6), 508–526 (2009)CrossRefGoogle Scholar
  71. 71.
    V. Rao, J. Johns, Mechanical properties of thermoplastic elastomeric blends of chitosan and natural rubber latex. J. Appl. Polym. Sci. 107(4), 2217–2223 (2008)CrossRefGoogle Scholar
  72. 72.
    J. Johns, V. Rao, Characterization of natural rubber latex/chitosan blends. Int. J. Polym. Anal. Charact. 13(4), 280–291 (2008)CrossRefGoogle Scholar
  73. 73.
    W. Taweepreda, Dynamic mechanical and dielectric properties of modified surface chitosan/natural rubber latex. Sains Malays. 43(2), 241–245 (2014)Google Scholar
  74. 74.
    K.M. Zia, M. Zuber, M. Barikani, I.A. Bhatti, M.A. Sheikh, Structural characteristics of UV-irradiated polyurethane elastomers extended with alpha, omega-alkane diols. J. Appl. Polym. Sci. 113(5), 2843–2850 (2009)CrossRefGoogle Scholar
  75. 75.
    K.M. Zia, M. Zuber, M. Barikani, I.A. Bhatti, M.B. Khan, Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf. B 72(2), 248–252 (2009)CrossRefGoogle Scholar
  76. 76.
    K.M. Zia, M. Barikani, I.A. Bhatti, M. Zuber, M. Barmar, XRD studies of UV-irradiated chitin based polyurethane elastomers. Carbohyd. Polym. 77(1), 54–58 (2009)CrossRefGoogle Scholar
  77. 77.
    K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, M.A. Sheikh, Thermo-mechanical characteristics of UV-irradiated polyurethane elastomers extended with alpha, omega-alkane diols. Nucl. Instrum. Methods B 267(10), 1811–1816 (2009)CrossRefGoogle Scholar
  78. 78.
    K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, H.N. Bhatti, XRD studies of polyurethane elastomers based on chitin/1,4-butane diol blends. Carbohyd. Polym. 76(2), 183–187 (2009)CrossRefGoogle Scholar
  79. 79.
    K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, M. Barmar, Surface characteristics of polyurethane elastomers based on chitin/1,4-butane diol blends. Int. J. Biol. Macromol. 44(2), 182–185 (2009)CrossRefGoogle Scholar
  80. 80.
    K.M. Zia, M. Zuber, I.A. Bhatti, M. Barikani, M.A. Sheikh, Evaluation of biocompatibility and mechanical behavior of chitin-based polyurethane elastomers. Part-II: Effect of diisocyanate structure. Int. J. Biol. Macromol. 44(1), 23–28 (2009)CrossRefGoogle Scholar
  81. 81.
    K.M. Zia, M. Zuber, I.A. Bhatti, M. Barikani, M.A. Sheikh, Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1,4-butane diol blends. Int. J. Biol. Macromol. 44(1), 18–22 (2009)CrossRefGoogle Scholar
  82. 82.
    K.M. Zia, M. Barikani, I.A. Bhatti, M. Zuber, H.N. Bhatti, Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane Elastomers. J. Appl. Polym. Sci. 110(2), 769–776 (2008)CrossRefGoogle Scholar
  83. 83.
    K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, Islam-ud-Din. Surface characteristics of UV-irradiated polyurethane elastomers extended with alpha, omega-alkane diols. Appl. Surf. Sci. 254(21), 6754–6761 (2008)CrossRefGoogle Scholar
  84. 84.
    K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, M.A. Sheikh, XRD studies of chitin-based polyurethane elastomers. Int. J. Biol. Macromol. 43(2), 136–141 (2008)CrossRefGoogle Scholar
  85. 85.
    K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, H.N. Bhatti, Morphological studies of polyurethane elastomers extended with alpha, omega alkane diols. Iran. Polym. J. 17(1), 61–72 (2008)Google Scholar
  86. 86.
    K.M. Zia, H.N. Bhatti, I.A. Bhatti, Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React. Funct. Polym. 67(8), 675–692 (2007)CrossRefGoogle Scholar
  87. 87.
    K.M. Zia, K. Mahmood, M. Zuber, T. Jamil, M. Shafiq, Chitin based polyurethanes using hydroxyl terminated polybutadiene. Part I: Molecular engineering. Int. J. Biol. Macromol. 59, 320–327 (2013)CrossRefGoogle Scholar
  88. 88.
    K.M. Zia, N.A. Qureshi, M. Mujahid, K. Mahmood, M. Zuber, Chitin based polyurethanes using hydroxyl terminated polybutadiene, Part II: morphological studies. Int. J. Biol. Macromol. 59, 313–319 (2013)CrossRefGoogle Scholar
  89. 89.
    K.M. Zia, M. Zuber, M.J. Saif, M. Jawaid, K. Mahmood, M. Shahid et al., Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. Int. J. Biol. Macromol. 62, 670–676 (2013)CrossRefGoogle Scholar
  90. 90.
    Y. Fan, T. Saito, A. Isogai, Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules 9(1), 192–198 (2008)CrossRefGoogle Scholar
  91. 91.
    Y.M. Fan, T. Saito, A. Isogai, Preparation of chitin nanofibers from squid pen beta-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9(7), 1919–1923 (2008)CrossRefGoogle Scholar
  92. 92.
    R.H. Marchessault, F.F. Morehead, N.M. Walter, Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686), 632–633 (1959)CrossRefGoogle Scholar
  93. 93.
    K.G. Nair, A. Dufresne, A. Gandini, M.N. Belgacem, Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6), 1835–1842 (2003)CrossRefGoogle Scholar
  94. 94.
    R.A.A. Muzzarelli, P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini et al., Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohyd. Polym. 70(3), 274–284 (2007)CrossRefGoogle Scholar
  95. 95.
    A. Morin, A. Dufresne, Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6), 2190–2199 (2002)CrossRefGoogle Scholar
  96. 96.
    S. Phongying, S. Aiba, S. Chirachanchai, Direct chitosan nanoscaffold formation via chitin whiskers. Polymer 48(1), 393–400 (2007)CrossRefGoogle Scholar
  97. 97.
    A. Watthanaphanit, P. Supaphol, H. Tamura, S. Tokura, R. Rujiravanit, Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J. Appl. Polym. Sci. 110(2), 890–899 (2008)CrossRefGoogle Scholar
  98. 98.
    M.J. Zaini, M.Y.A. Fuad, Z. Ismail, M.S. Mansor, J. Mustafah, The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polym. Int. 40(1), 51–55 (1996)CrossRefGoogle Scholar
  99. 99.
    J.B. Zeng, Y.S. He, S.L. Li, Y.Z. Wang, Chitin whiskers: an overview. Biomacromolecules 13(1), 1–11 (2012)CrossRefGoogle Scholar
  100. 100.
    M. Paillet, A. Dufresne, Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34(19), 6527–6530 (2001)CrossRefGoogle Scholar
  101. 101.
    P.M. Visakh, S. Thomas, K. Oksman, A.P. Mathew, Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: diffusion, sorption, and permeation of aromatic organic solvents. J. Appl. Polym. Sci. 124(2), 1614–1623 (2012)CrossRefGoogle Scholar
  102. 102.
    P.M. Visakh, S. Thomas, K. Oksman, A.P. Mathew, Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos. A Appl. Sci. 43(4), 735–741 (2012)CrossRefGoogle Scholar
  103. 103.
    P.M. Visakh, S. Thomas, K. Oksman, A.P. Mathew, Effect of cellulose nanofibers isolated from bamboo pulp residue on vulcanized natural rubber. Bioresources 7(2), 2156–2168 (2012)CrossRefGoogle Scholar
  104. 104.
    V. PM, A.P. Mathew, S. Thomas, K. Oksman, Elastomeric nanocomposites potential of chitin and cellulose nanostructures as reinforcing phase, in Proceedings of the 15th European Conference on Composite Materials, Venice, 24–28 June 2012 (2012)Google Scholar
  105. 105.
    D. Bondeson, A. Mathew, K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2), 171–180 (2006)CrossRefGoogle Scholar
  106. 106.
    P.M. Visakh, S. Thomas, Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valoriz. 1(1), 121–134 (2010)CrossRefGoogle Scholar
  107. 107.
    H. Angellier, S. Molina-Boisseau, L. Lebrun, A. Dufresne, Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38(9), 3783–3792 (2005)CrossRefGoogle Scholar
  108. 108.
    P.M. Visakh, M. Monti, D. Puglia, M. Rallini, C. Santulli, F. Sarasini et al., Mechanical and thermal properties of crab chitin reinforced carboxylated SBR composites. Express Polym. Lett. 6(5), 396–409 (2012)CrossRefGoogle Scholar
  109. 109.
    C. Santulli, D. Puglia, M. Rallini, P. Visakh, J. Kenny, S. Thomas, Natural rubber composites filled with a low volume of crab chitin whiskers: mechanical and thermal characterization. Malays. Polym. J. 9(1), 18–23 (2014)Google Scholar
  110. 110.
    M.X. Liu, Q. Peng, B.H. Luo, C.R. Zhou, The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur. Polym. J. 68, 190–206 (2015)CrossRefGoogle Scholar
  111. 111.
    M.R.H.M. Haris, G. Raju, Preparation and characterization of biopolymers comprising chitosan-grafted-ENR via acid-induced reaction of ENR50 with chitosan. Express Polym. Lett. 8(2), 85–94 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations