Rubber Based Bionanocomposites: Preparation and State of Art

  • Visakh P.M.Email author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 56)


The present chapter deals with a brief account on various topics in rubber based bionanocomposites: preparation and state of art. This chapter discussed with different topics such as cellulose based rubber nanocomposites, chitin based rubber nanocomposites, applications of chitin based rubber nanocomposites, chitin in rubber based blends and micro composites, starch in rubber based blends and micro composites, polylactic acid based rubber composites and nanocomposites, applications of rubber based biocomposites and bionanocomposites, vinyl ester (BisGMA)/SEBS/f-MWCNTs based nanocomposites preparation and applications and starch based rubber nanocomposites.


Bionanocomposites Cellulose rubber nanocomposites Chitin rubber nanocomposites Rubber based blends Micro bio composites 


  1. 1.
    R.L. Crawford, Lignin Biodegradation and Transformation (Wiley, New York, 1981). ISBN 0-471-05743-6Google Scholar
  2. 2.
    R. Young, Cellulose Structure Modification and Hydrolysis (Wiley, New York, 1986). ISBN 0471827614Google Scholar
  3. 3.
    D.M. Updegraff, Anal. Biochem. 32, 420–424 (1969)CrossRefGoogle Scholar
  4. 4.
    S. Kuga, R.M. Brown, Carbohydr. Res. 180, 345–350 (1988)CrossRefGoogle Scholar
  5. 5.
    K.R.Z. Andress, J. Phys. Chem. Part B 190, 38 (1929)Google Scholar
  6. 6.
    Y. Habibi, L.A. Lucia, O.J. Rojas, Chem. Rev. 110, 3479–3500 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Chanzy, Y. Nishiyama, P. Langan, J. Am. Chem. Soc. 121(43), 9940–9946 (1999)CrossRefGoogle Scholar
  8. 8.
    C. Klason, J. Kubat, H.E. Stromvall, Int. J. Polym. Mater. 11(1), 9–38 (1985)CrossRefGoogle Scholar
  9. 9.
    P. Zadorecki, A.J. Michell, Polym. Compos. 10(2), 69–77 (1989)CrossRefGoogle Scholar
  10. 10.
    D. Maldas, B.V. Kokta, R. Raj, G.C. Daneault, Polymer 29(7), 1255–1265 (1988)CrossRefGoogle Scholar
  11. 11.
    P. Terech, L. Chazeau, J.-Y. Cavaille, Macromolecules 32, 1872–1875 (1999)CrossRefGoogle Scholar
  12. 12.
    F.G. Torres, R. Flores, J.F. Dienstmaier, O.A. Quintana, Polym. Compos. 13, 753–764 (2005)Google Scholar
  13. 13.
    F.G. Torres, O.H. Arroyo, C. Gomez, Thermoplast. Compos. Mater. 20, 207–223 (2007)CrossRefGoogle Scholar
  14. 14.
    F.G. Torres, C.L. Aragon, Polym. Test. 25, 568–577 (2006)CrossRefGoogle Scholar
  15. 15.
    F.G. Torres, O.H. Arroyo, C. Grande, E. Esparza, Int. J. Polym. Mater. 55, 1115–1132 (2006)CrossRefGoogle Scholar
  16. 16.
    C. Grande, F.G. Torres, Adv. Polym. Technol. 24, 145–156 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Roman, W.T. Winter, Biomacromolecules 5, 1671–1677 (2004)CrossRefGoogle Scholar
  18. 18.
    M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas, Biomacomolecules 11, 674–681 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Zimmermann, E. Pöhler, T. Geiger, Adv. Eng. Mater. 6, 754–761 (2004)CrossRefGoogle Scholar
  20. 20.
    M.A.S. Azizi Samir, F. Alloin, J.-Y. Sanchez, A. Dufresne, Macromolecules 37, 4839–4844 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Legnani, C. Vilani, V.L. Calil, H.S. Barud, W.G. Quirino, C.A. Achete, S.J.L. Ribeiro, M. Cremona, Thin Solid Films 517, 1016–1020 (2008)CrossRefGoogle Scholar
  22. 22.
    D.R. Rathke, S.M. Hudson, J. Macromol. Sci. Rev. Macromol. Chem. Phys. 34, 375 (1994)CrossRefGoogle Scholar
  23. 23.
    W. Arbia, L. Arbia, L.A.A. Adour, Chitin extraction from crustacean shells using biological methods—a review. Food Technol. Biotechnol. 51, 12–25 (2013)Google Scholar
  24. 24.
    K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4(3), 657–665 (2003)CrossRefGoogle Scholar
  25. 25.
    D.K. Singh, A.R.J. Ray, Macromol. Sci. Rev. Macromol. Chem. Phys. C40, 69 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Lu, L. Weng, L. Zhang, Biomacromolecules 5, 1046 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Paillet, A. Dufresne, Macromolecules 34, 6527 (2001)CrossRefGoogle Scholar
  28. 28.
    S.I Fuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto, H. Yano, Carbohydr. Polym. 84, 762 (2011)Google Scholar
  29. 29.
    P. Wongpanit, N. Sanchavanakit, P. Pavasant, T. Bunaprasert, Y. Tabata, R. Rujiravanit, Eur. Polym. J. 43, 4123 (2007)CrossRefGoogle Scholar
  30. 30.
    J.-B. Zeng, Y.-S. He, S.-L. Li, Y.-Z. Wang, Biomacromolecules 13, 1 (2012)Google Scholar
  31. 31.
    M.J. Zaini, M.Y.A. Fuad, H. Ismail, M.S. Mansor, J. Mustafah, Polym. Int. 40, 51 (1996)CrossRefGoogle Scholar
  32. 32.
    B. Krajewska, Enzym. Micro Technol. 35, 126–139 (2004)CrossRefGoogle Scholar
  33. 33.
    N.L. Yusof, A. Wee, L.Y. Lim, E. Khor, Biomed. Mater. Res. Part A 66A, 224–232 (2003)CrossRefGoogle Scholar
  34. 34.
    M. Kanke, H. Katayama, S. Tsuzuki, H. Kuramoto, Chem. Pharm. Bull. 37, 523–525 (1989)CrossRefGoogle Scholar
  35. 35.
    Y. Kato, H. Onishi, Y.J. Machida, Curr. Pharm. Biotechnol. 4, 303–309 (2003)CrossRefGoogle Scholar
  36. 36.
    K. Gopalan Nair, A. Dufresne, Biomacromolecules 4(3), 657–665 (2003)CrossRefGoogle Scholar
  37. 37.
    A. Morin, A. Dufresne, Macromolecules 35, 2190–2199 (2002)CrossRefGoogle Scholar
  38. 38.
    K. Gopalan Nair, A. Dufresne, Biomacromolecules 4(3), 666–674 (2003)CrossRefGoogle Scholar
  39. 39.
    K. Gopalan Nair, A. Dufresne, Biomacromolecules 4(6), 1835–1842 (2003)CrossRefGoogle Scholar
  40. 40.
    M.A.S. Azizi Samir, F. Alloin, J.Y. Sanche, N. El Kissi, A. Dufresne, Macromolecules 37, 1386–1393 (2004)CrossRefGoogle Scholar
  41. 41.
    R.J. Rujiravanit, J. Sriupayo, P. Supaphol, J. Blackwell, Carbohydr. Polym. 62, 130–136 (2005)CrossRefGoogle Scholar
  42. 42.
    E. Ruiz-Hitzky, M. Darder (eds.), Curr. nanosci. 2, 153–294 (2006)Google Scholar
  43. 43.
    J.K. Pandey, A.P. Kumar, M. Misra, A.K. Mohanty, L.T. Drzal, R.P.J. Singh, j. nanosci. nanotechnol. 5(4), 497–526 (2005)Google Scholar
  44. 44.
    C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Polymer 43, 2645–2651 (2002)CrossRefGoogle Scholar
  45. 45.
    O.J. Rojas, G.A. Montero, Y. Habibi, J. Appl. Polym. Sci. 113, 927–935 (2009)CrossRefGoogle Scholar
  46. 46.
    Y. Matsushita, A. Suzuki, T. Sekiguchi, K. Saito, T. Imai, K. Fukushima, Appl. Surf. Sci. 255, 1022–1024 (2008)CrossRefGoogle Scholar
  47. 47.
    V.G. Geethamma, G. Kalaprasad, G. Groeninckx, S. Thomas, Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manufact. 36(11), 1499–1506 (2005)CrossRefGoogle Scholar
  48. 48.
    V.G. Geethamma, S. Thomas, Diffusion of water and artificial seawater through coir fiber reinforced natural rubber composites. Polym. Compos. 26(2), 136–143 (2005)CrossRefGoogle Scholar
  49. 49.
    K.M. Zia, M. Barikani, M. Zuber, I.A. Bhatti, M.A. Sheikh, Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74(2), 149–158 (2008)CrossRefGoogle Scholar
  50. 50.
    M. Barikani, H. Honarkar, M. Barikani, Synthesis and characterization of polyurethane elastomers based on chitosan and poly(epsilon-caprolactone). J. Appl. Polym. Sci. 112(5), 3157–3165 (2009)CrossRefGoogle Scholar
  51. 51.
    H. Ismail, S.M. Shaari, N. Othman, The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test. 30(7), 784–790 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Ismail, F.S. Haw, Effects of palm ash loading and maleated natural rubber as a coupling agent on the properties of palm-ash-filled natural rubber composites. J. Appl. Polym. Sci. 110(5), 2867–2876 (2008)CrossRefGoogle Scholar
  53. 53.
    K.M. Zia, K. Mahmood, M. Zuber, T. Jamil, M. Shafiq, Chitin based polyurethanes using hydroxyl terminated polybutadiene. Part I: molecular engineering. Int. J. Biomacromolecules 59, 320–327 (2013)CrossRefGoogle Scholar
  54. 54.
    K.M. Zia, M. Zuber, M.J. Saif, M. Jawaid, K. Mahmood, M. Shahid et al., Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics. Int. J. Biomacromolecules 62, 670–676 (2013)CrossRefGoogle Scholar
  55. 55.
    K. Gopalan Nair, A. Dufresne, A. Gandini, M.N. Belgacem, Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6), 1835–1842 (2003)CrossRefGoogle Scholar
  56. 56.
    R.A.A. Muzzarelli, P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini et al., Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr. Polym. 70(3), 274–284 (2007)CrossRefGoogle Scholar
  57. 57.
    A. Morin, A. Dufresne, Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6), 2190–2199 (2002)CrossRefGoogle Scholar
  58. 58.
    S. Phongying, S. Aiba, S. Chirachanchai, Direct chitosan nanoscaffold formation via chitin whiskers. Polymer 48(1), 393–400 (2007)CrossRefGoogle Scholar
  59. 59.
    M. Mincea, A. Negrulescu, V. Ostafe, Preparation, modification, and applications of chitin nanowhiskers: a review. Rev. Adv. Mater. Sci. 30(3), 225–242 (2012)Google Scholar
  60. 60.
    K. Gopalan Nair, A. Dufresne, Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3), 666–674 (2003)CrossRefGoogle Scholar
  61. 61.
    M.A. Garcia, M.N. Martino, N.E. Zaritzky, Starch-based coatings: effect on refrigerated strawberry (Fragaria ananassa) quality. J. Sci. Food Agric. 76, 411–420 (1998)CrossRefGoogle Scholar
  62. 62.
    S.H. Imam, S.H. Gordon, L. Mao, L. Chen, Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polym. Degrad. Stab. 73, 529–533 (2001)CrossRefGoogle Scholar
  63. 63.
    Y. Wei, F. Cheng, H. Zheng, Synthesis and flocculating properties of cationic starch derivatives, Carbohydr. Polym. 74, 673–679 (2008)Google Scholar
  64. 64.
    J. Wu, Y. Wei, J. Lin, S. Lin, Study on starch-graft-acrylamide/mineral powder super absorbent composite. Polymer 44, 6513–6520 (2003)CrossRefGoogle Scholar
  65. 65.
    B.R. Pant, H.-J. Jeon, H.H. Song, Radiation cross-linked carboxymethylated starch and iron removal capacity in aqueous solution. Macromol. Res. 19, 307–312 (2011)CrossRefGoogle Scholar
  66. 66.
    M.-C. Li, J.K. Lee, U.R. Cho, Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. J. Appl. Polym. Sci. 125, 405–414 (2012)Google Scholar
  67. 67.
    E.D.M. Teixeira, D. Pasquini, A.A.S. Curvelo, E. Corradini, M.N. Belgacem, A. Dufresne, Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr. Polym. 78, 422–431 (2009)CrossRefGoogle Scholar
  68. 68.
    D. Liu, Q. Wu, H. Chen, P.R. Chang, Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339, 117–124 (2009)CrossRefGoogle Scholar
  69. 69.
    A. Shi, D. Li, L. Wang, B. Lia, B. Adhikari, Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr. Polym. 83, 1604–1610 (2011)CrossRefGoogle Scholar
  70. 70.
    X. Ma, R. Jian, P.R. Chang, R. Yu, Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9, 3314–3320 (2008)CrossRefGoogle Scholar
  71. 71.
    Y. Tan, K. Xu, L. Li, C. Liu, C. Song, P. Wang, Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Appl. Mater. Interfaces 1, 956–959 (2009)Google Scholar
  72. 72.
    S. Xiao, X. Liu, C. Tong, J. Liu, D. Tang, L. Zhao, Studies of poly-L-lysine-starch nanoparticle preparation and its application as gene carrier. Sci. China Ser. B Chem. 48, 162–9166 (2005)CrossRefGoogle Scholar
  73. 73.
    D. Yu, S. Xiao, C. Tong, C. Lin, X. Liu, Dialdehyde starch nanoparticles: preparation and application in drug carrier. Chinese Sci. Bull. 52, 2913–2918 (2007)CrossRefGoogle Scholar
  74. 74.
    S.F. Chin, S.C. Pang, S.H. Tay, Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 86, 1817–1819 (2011)CrossRefGoogle Scholar
  75. 75.
    Y.-J. Wang, V.-D. Truong, L. Wang, Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch/Starke 53, 570–576 (2001)CrossRefGoogle Scholar
  76. 76.
    V.D. Athawale, V. Lele, Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile. Carbohydr. Polym. 41, 407–416 (2000)CrossRefGoogle Scholar
  77. 77.
    A.J.F. Carvalho, A.E. Job, N. Alves, A.A.S. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)CrossRefGoogle Scholar
  78. 78.
    A.I. Khalaf, E.M. Sadek, Compatibility study in natural rubber and maize starch blends. J. Appl. Polym. Sci. 125, 959–967 (2012)CrossRefGoogle Scholar
  79. 79.
    Z.F. Wang, Z. Peng, S.D. Li, H. Lin, K.X. Zhang, X.D. She, X. Fu, The impact of esterification on the properties of starch/natural rubber composites. Compos. Sci. Technol. 69, 1797–1803 (2009)CrossRefGoogle Scholar
  80. 80.
    M.C. Li, X. Ge, U.R. Cho, Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber. Macromol. Res. 21, 519–528 (2013)CrossRefGoogle Scholar
  81. 81.
    D. LeCorre, J. Bras, A. Dufresne, Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites, Macromol. Mater. Eng. Doi: 10.1002/mame.201100317
  82. 82.
    M.M. Senna, R.M. Mohamed, A.N. Shehab-Eldin, S. El-Hamouly, Characterization of electron beam irradiated natural rubber/modified starch composites. J. Ind. Eng. Chem. 18, 1654–1661 (2013)CrossRefGoogle Scholar
  83. 83.
    Y.P. Wu, G.H. Liang, L.Q. Zhang, Influence of starch on the properties of carbonblackfilled styrene–butadiene rubber composites. J. Appl. Polym. Sci. 114(4), 2254–2260 (2009)CrossRefGoogle Scholar
  84. 84.
    D.J. Sawyer, Bioprocessing; no longer a field of dreams. Macromol. Symp. 201, 271–281 (2003)CrossRefGoogle Scholar
  85. 85.
    J.R. Dorgan, H.J. Lehermeier, L.I. Palade, J. Cicero, Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 175, 55–66 (2001)CrossRefGoogle Scholar
  86. 86.
    M. Hiljanen-Vainio, P. Varpomaa, J. Seppälä, P. Törmälä, Modification of poly(l-lactides) by blending: mechanical and hydrolytic behavior. Macromol. Chem. Phys. 197, 1503–1523 (1996)CrossRefGoogle Scholar
  87. 87.
    R.M. Rasal, D.E. Hirt, Toughness decrease of PLA–PHBHHx blend films upon surface-confined photo polymerization. J. Biomed. Mater. Res. Part A 88(4), 1079–1086 (2008)Google Scholar
  88. 88.
    R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)CrossRefGoogle Scholar
  89. 89.
    N. Bitinis, R. Verdejo, P. Cassagnau, M.A. Lopez-Manchadoa, Structure and properties of polylactide/natural rubber blends. Mater. Chem. Phys. 129, 823–831 (2011)CrossRefGoogle Scholar
  90. 90.
    B. Meng, J. Deng, Q. Liu, Z. Wu, W. Yang, Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur. Polym. J. 48, 127–135 (2012)CrossRefGoogle Scholar
  91. 91.
    S. Ishida, R. Nagasaki, K. Chino, T. Dong, Y. Inoue, Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 113, 558–566 (2009)CrossRefGoogle Scholar
  92. 92.
    G. Siqueira, J. Bras, A. Dufresne, Polymers 2, 728 (2010)CrossRefGoogle Scholar
  93. 93.
    D. Puglia, J. Biagiotti, J.M. Kenny, J. Nat. Fibers 1, 23 (2004)CrossRefGoogle Scholar
  94. 94.
    J. Jordan, K.J. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasuk, Experimental trends in polymer nanocomposites—a review. Mater. Sci. Eng. A Struct. 393, 1–11 (2005)Google Scholar
  95. 95.
    M. Moniruzzaman, K. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRefGoogle Scholar
  96. 96.
    A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40, 1721–1725 (2001)CrossRefGoogle Scholar
  97. 97.
    F. Ciardelli, S. Coiai, E. Passaglia, A. Pucci, G. Ruggeri, Nanocomposites based on polyolefins and functional thermoplastic materials. Polym. Int. 57, 805–836 (2008)CrossRefGoogle Scholar
  98. 98.
    C. Nakason, A. Kaesaman, K. Eardrod, Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)–cassava starch compounds. Mater. Lett. 59, 4020–4025 (2005)CrossRefGoogle Scholar
  99. 99.
    C. Nakason, A. Kaesaman, S. Homsin, S. Kiatkamjonwong, Rheological and curing behavior of reactive blending. II. Natural rubber-g-poly(methyl methacrylate)–cassava starch. J. Appl. Polym. Sci. 89, 1453–1463 (2003)CrossRefGoogle Scholar
  100. 100.
    C. Nakason, A. Kaesaman, T. Wongkul, S. Kiatkamjonwong, Rheological and curing properties of reactive blending products of epoxidised natural rubber and cassava starch. Plast Rubber Compos. 30, 154–161 (2001)CrossRefGoogle Scholar
  101. 101.
    S. Hizukuri, Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147, 342–347 (1986)CrossRefGoogle Scholar
  102. 102.
    R. Stute, R.W. Klingler, S. Boguslawski Dipl-Ing, M.N. Eshtiaghi Dipl-Ing, D. Knorr, Effects of high pressures treatment on starches. Starch 48, 11–12 (1996)CrossRefGoogle Scholar
  103. 103.
    A. Imberty, H. Chanzy, S. Perez, A. Buleon, V. Tran, New three-dimensional structure for A-type starch. Macromolecules 20, 2634–2636 (1987)CrossRefGoogle Scholar
  104. 104.
    A. Imberty, S. Perez, A revisit to the three-dimensional structure of B-type starch. Biopolymers 27, 1205–1221 (1988)CrossRefGoogle Scholar
  105. 105.
    F.G. Corvasce, F.A.J. Fourgon, Chemically modified starch reinforced natural rubber composites. EP 1293530 (2003)Google Scholar
  106. 106.
    T. Tomita, T. Horiguchi, I. Tsumori, Chemically modified starch reinforced natural rubber composites. JP 2005053944 (2005)Google Scholar
  107. 107.
    C. Wang, Z.L. Pan, P. Zhao, S.B. Fang, Y.J. Li, CN 03109143 (2003)Google Scholar
  108. 108.
    H. Tang, Q. Qi, Y. Wu, G. Liang, L. Zhang, J. Ma, Reinforcement of elastomer by starch. Macromol. Mater. Eng. 291, 629–637 (2006)CrossRefGoogle Scholar
  109. 109.
    H. Yang, Q. Zhang, M. Guo, C. Wang, R. Du, Q. Fu, Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47, 2106–2115 (2006)CrossRefGoogle Scholar
  110. 110.
    A. Dufresne, J.Y. Cavaille, W. Helbert, New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29, 7624–7626 (1996)CrossRefGoogle Scholar
  111. 111.
    S. Pichaiyut, S. Wisunthorn, C. Thongpet, C. Nakason. Novel ternary blends of natural rubber/linear low-density polyethylene/thermoplastic starch: influence of epoxide level of epoxidized natural rubber on blend properties. Iran Polym. J. (2016). Doi: 10.1007/S/3726-016-0459-z
  112. 112.
    M. Bootklad, K. Kaewtatip, Biodegradability, mechanical, and thermal properties of thermoplastic starch/cuttlebone composites. Polym. Compos. 36, 1401–1406 (2007)CrossRefGoogle Scholar
  113. 113.
    C. Yokesahachart, R. Yoksan, Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr. Polym. 83, 22–31 (2011)CrossRefGoogle Scholar
  114. 114.
    R. Shanks, I. Kong, Thermoplastic Starch, Thermoplastic Elastomers (2012), Rijeka, Croatia, pp. 137–154Google Scholar
  115. 115.
    M.M. Pang, M.Y. Pun, Z.A.M. Ishak, Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/ polypropylene blends. J. Appl. Polym. Sci. 129, 3656–3664 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Ecology and Basic SafetyTomsk Polytechnic UniversityTomskRussia

Personalised recommendations