Skip to main content

Recognition of Activities in Resource Constrained Environments; Reducing the Computational Complexity

  • Conference paper
  • First Online:
Book cover Ubiquitous Computing and Ambient Intelligence (IWAAL 2016, AmIHEALTH 2016, UCAmI 2016)

Abstract

In our current work we propose a strategy to reduce the vast amounts of data produced within smart environments for sensor-based activity recognition through usage of the nearest neighbor (NN) approach. This approach has a number of disadvantages when deployed in resource constrained environments due to its high storage requirements and computational complexity. These requirements are closely related to the size of the data used as input to NN. A wide range of prototype generation (PG) algorithms, which are designed for use with the NN approach, have been proposed in the literature to reduce the size of the data set. In this work, we investigate the use of PG algorithms and their effect on binary sensor-based activity recognition when using a NN approach. To identify the most suitable PG algorithm four datasets were used consisting of binary sensor data and their associated class activities. The results obtained demonstrated the potential of three PG algorithms for sensor-based activity recognition that reduced the computational complexity by up to 95 % with an overall accuracy higher than 90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ODI1 and ODI2 datasets were generated by Ulster University thanks to the Open Data Initiative (ODI) [33] for Activity Recognition consortium that aims to create a structured approach to provide annotated datasets in an accessible format.

References

  1. Chen, L., Hoey, J., Nugent, C., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42(6), 790–808 (2012)

    Article  Google Scholar 

  2. Maksimovic, M., Vujovic, V., Davidovic, N., Milosevic, V., Raspberry, P.B.: Pi as internet of things hardware: performances and constraints. Des. Issues 3(8), 8 (2014)

    Google Scholar 

  3. Doukas, C.: Building Internet of Things with the ARDUINO. CreateSpace Independent Publishing Platform, USA (2012)

    Google Scholar 

  4. Botta, A., Donato, W., Persico, V., Pescape, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  5. Chui, M., Loffler, M., Roberts, R.: The Internet of Things (Process Optimization). McKinsey Quarterly, Germany (2010)

    Google Scholar 

  6. Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A pattern mining approach to sensor-based human activity recognition. IEEE Trans. Knowl. Data Eng. 23(9), 1359–1372 (2011)

    Article  Google Scholar 

  7. Li, C., Lin, M., Yang, L.T., Ding, C.: Integrating the enriched feature with machine learning algorithms for human movement and fall detection. J. Supercomput. 67(3), 854–865 (2014)

    Article  Google Scholar 

  8. San Martin, L.A., Pelaez, V.M., Gonzalez, R., Campos, A., Lobato, V.: Environmental user-preference learning for smart homes: an autonomous approach. J. Ambient Intell. Smart Environ. 2(3), 327–342 (2010)

    Google Scholar 

  9. Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environments. Int. J. Web Inf. Syst. 5(4), 410–430 (2009)

    Article  Google Scholar 

  10. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)

    Article  Google Scholar 

  11. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  12. Wu, X., Kumar, V.: The Top Ten Algorithms in Data Mining, 1st edn. Chapman & Hall/CRC, Boca Raton (2009)

    Book  Google Scholar 

  13. Al-Faiz, M.Z., Ali, A.A., Miry, A.H.: A k-nearest neighbor based algorithm for human arm movements recognition using EMG signals. In: EPC-IQ 2010, pp. 159–167 (2010)

    Google Scholar 

  14. Jafari, R., Li, W., Bajcsy, R., Glaser, S., Sastry, S.: Physical activity monitoring for assisted living at home. In: Leonhardt, S., Falck, T., Mähönen, P. (eds.) BSN 2007. IFMBE, vol. 13, pp. 213–219. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Moayeri Pour, G., Troped, P.J., Evans, J.J.: Environment feature extraction and classification for context aware physical activity monitoring. In: SAS 2013, pp. 123–128 (2013)

    Google Scholar 

  16. Kononenko, I., Machine, K.M., Learning, D.M.: Introduction to Principles and Algorithms. Horwood Publishing Limited, Chichester (2007)

    Google Scholar 

  17. Garcia, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)

    Article  Google Scholar 

  18. Lozano, M., Sotoca, J.M., Sanchez, J.S., Pla, F., Pekalska, E., Duin, R.P.W.: Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recognit. 39(10), 1827–1838 (2006)

    Article  MATH  Google Scholar 

  19. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Garcia, E.K., Feldman, S., Gupta, M.R., Srivastava, S.: Completely lazylearning. IEEE Trans. Knowl. Data Eng. 22(9), 1274–1285 (2010)

    Article  Google Scholar 

  21. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000)

    Article  MATH  Google Scholar 

  22. Geva, S., Site, J.: Adaptive nearest neighbor pattern classifier. IEEE Trans. Neural Netw. 2(2), 318–322 (1991)

    Article  Google Scholar 

  23. Kim, S.W., Oomenn, A.: A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal. Appl. 6, 232–244 (2003)

    Article  MathSciNet  Google Scholar 

  24. The, K.T.: The self-organizative map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  25. Koplowitz, J., Brown, T.A.: On the relation of performance to editing in nearest neighbor rules. Pattern Recognit. 13, 251–255 (1981)

    Article  Google Scholar 

  26. Sanchez, J.S., Barandela, R., Marques, A.I., Alejo, R., Badenas, J.: Analysis of new techniques to obtain quaylity training sets. Pattern Recognit. Lett. 24, 1015–1022 (2003)

    Article  Google Scholar 

  27. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1184 (1974)

    Article  MATH  Google Scholar 

  28. Fayed, H.A., Hashem, S.R., Atiya, A.F.: Self-generating prototypes for pattern classification. Pattern Recognit. 40(5), 1498–1509 (2007)

    Article  MATH  Google Scholar 

  29. Raicharoen, T., Lursinsap, C.: A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm. Pattern Recognit. Lett. 26(10), 1554–1567 (2005)

    Article  Google Scholar 

  30. Sanchez, J.S.: High training set size reduction by space partitioning and prototype abstraction. Pattern Recognit. 37, 1561–1564 (2004)

    Article  Google Scholar 

  31. Cook, D.J., Schmitter-Edgecombe, M.: Assessing the quality of activities in a smart environment. Method Inf. Med. 48(5), 480–485 (2009)

    Article  Google Scholar 

  32. Synnott, J., Chen, L., Nugent, C.D., Moore, G.: The creation of simulated activity datasets using a graphical intelligent environment simulation tool, pp. 4143–4146 (2014)

    Google Scholar 

  33. Nugent, C., Synnott, J., Santanna, A., Espinilla, M., Cleland, I., Banos, L.J.O., et al.: An initiative for the creation of open datasets within the pervasive healthcare, pp. 180–183 (2016)

    Google Scholar 

  34. Van Kasteren, T., Noulas, A., Englebienne, G., Krse, B.: Accurate activity recognition in a home setting, pp. 1–9 (2008)

    Google Scholar 

  35. Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  36. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, London (1982)

    MATH  Google Scholar 

Download references

Acknowledgments

This contribution has been supported by research projects: TIN2015-66524-P and UJAEN/2014/06/14. Invest Northern Ireland is acknowledged for partially supporting this project under the Competence Centre Program Grant RD0513853 - Connected Health Innovation Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Espinilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Espinilla, M., Rivera, A., Pérez-Godoy, M.D., Medina, J., Martínez, L., Nugent, C. (2016). Recognition of Activities in Resource Constrained Environments; Reducing the Computational Complexity. In: García, C., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds) Ubiquitous Computing and Ambient Intelligence. IWAAL AmIHEALTH UCAmI 2016 2016 2016. Lecture Notes in Computer Science(), vol 10070. Springer, Cham. https://doi.org/10.1007/978-3-319-48799-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48799-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48798-4

  • Online ISBN: 978-3-319-48799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics