Skip to main content

Strong Stacking between Organic and Organometallic Molecules as the Key for Material Design

  • Conference paper
  • 1240 Accesses

Abstract

Very attractive properties of organic-inorganic materials consisting of planar molecules, namely magnetism, conductivity, non-linear optics and catalysis, are highly dependent on the stacking interactions. Metal-chelate rings and aromatic molecules are very common constituents of these materials. The search of Cambridge Structural Database has shown that stacking interactions of chelates and aromatic molecules occur very often in crystal structures; these interactions are of very similar geometries to stacking between two aromatic molecules. The energies of these interactions have been calculated at high theoretical levels, showing much stronger stacking of six-membered chelate with benzene that stacking of two benzene molecules. The stacking interaction between two benzene molecules is -2.73 kcal/mol, while the interaction between benzene and chelate ring dependent on the metal type, being stronger for copper(II)-chelate (-6.08 kcal/mol) than for nickel(II)-chelate (-4.68 kcal/mol). The energies of interactions are calculated at CCSD(T)/CBS level and the benchmark study was performed to find Minnesota functionals that can reproduce this data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Janiak and J. K. Vieth, New J. Chem., 34 (2010), 2366–2388.

    Article  Google Scholar 

  2. E. Coronado and P. Day, Chem. Rev., 104 (2004), 5419–5448.

    Article  Google Scholar 

  3. D.N. Sredojević et al., CrystEngComm, 9 (2007), 793–798.

    Article  Google Scholar 

  4. K.F. Konidaris, A.K. Powell, and G.E. Kostakis, CrystEngComm, 13 (2011), 5872–5876.

    Article  Google Scholar 

  5. K.F. Konidaris et al., CrystEngComm, 14 (2012), 1842–1849.

    Article  Google Scholar 

  6. Z.D. Tomić, D.N. Sredojević, and S.D. Zarić, Cryst. Growth Des., 6 (2006), 29–31.

    Article  Google Scholar 

  7. D.N. Sredojević et al., ChemPhysChem, 14 (2013), 1797–1800.

    Article  Google Scholar 

  8. E.C. Lee et al., J. Phys. Chem. A, 111 (2007), 3446–3457

    Article  Google Scholar 

  9. O. Sinnokrot, E.F. Valeev, and C. D. Sherrill, J. Am. Chem. Soc., 124 (2002), 10887–10893.

    Article  Google Scholar 

  10. D.P. Malenov et al., ChemPhysChem, 15 (2014), 2458–2461.

    Article  Google Scholar 

  11. K.F. Konidaris, A.C. Tsipis, and G.E. Kostakis, ChemPlusChem, 77 (2012), 354–360.

    Article  Google Scholar 

  12. Gaussian 09 (Revision D.01), M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  13. I.D. Mackie and G.A. DiLabio, J. Chem. Phys., 135 (2011), 134318.

    Article  Google Scholar 

  14. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 7 (2005), 3297–305.

    Article  Google Scholar 

  15. S. Grimme et al., J. Chem. Phys., 132 (2010), 154104.

    Article  Google Scholar 

  16. S. F. Boys and F. Bernardi, Mol. Phys., 19 (1970), 553–566.

    Article  Google Scholar 

  17. Y. Zhao, N.E. Schultz, and D.G. Truhlar, J. Chem. Phys., 123 (2005), 161103.

    Article  Google Scholar 

  18. Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120 (2008), 215–241.

    Article  Google Scholar 

  19. Y. Zhao, N.E. Schultz, and D.G. Truhlar, J. Chem. Theory and Comput., 2 (2006), 364–382.

    Article  Google Scholar 

  20. Y. Zhao and D.G. Truhlar, J. Chem. Phys., 125 (2006), 194101.

    Article  Google Scholar 

  21. Y. Zhao and D.G. Truhlar, J. Phys. Chem. A, 110 (2006), 5121–5129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Zarić, S.D., Malenov, D.P., Ninković, D.B. (2015). Strong Stacking between Organic and Organometallic Molecules as the Key for Material Design. In: Karaman, I., Arróyave, R., Masad, E. (eds) Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015). Springer, Cham. https://doi.org/10.1007/978-3-319-48766-3_43

Download citation

Publish with us

Policies and ethics