Skip to main content

Abstract

We have performed ab inito electronic structure calculations and Monte Carlo simulations of FeRh, Mn3GaC and Heusler intermetallics alloys such as Ni-Co-Cr-Mn-(Ga, In, Sn) which are of interest for solid refrigeration and energy systems, an emerging technology involving such solid-solid systems. The calculations reveal that the important magnetic phase diagrams of these alloys which show the magnetic collapse and allow predictions of the related magnetocaloric effect (MCE) which they exhibit at finite temperatures, can be obtained by ab inito and Monte Carlo computations in qualitatively good agreement with experimental data. This is a one-step procedure from theory to alloy design of ferroic functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Manekar and S.B. Roy, ”Reproducible room temperature giant mangetocaloric effect in Fe-Rh”, J. Phys. D: Appl. Phys, 41 (2008), 192004.

    Article  Google Scholar 

  2. Ö. Çakır, M. Acet, M. Farle, and A. Senysghen, ”Neutron diffraction study of the magnetic-field-induce transition inMn3GaC”, J. Appl. Phys., 115 (2014), 043913.

    Article  Google Scholar 

  3. D.Y. Cong, S. Roth, and L. Schultz, ”Magnetic properties and structural transformations ion Ni-Co-Mn-Sn multifunctional alloys”, Acta Mater., 60 (2012), 5335–5351.

    Article  Google Scholar 

  4. A. Planes, L. Mñanosa, and M. Acet, ”Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys”, J. Phys.: Condens. Matter, 21 (2009), 233201.

    Google Scholar 

  5. M. Acet, L. Mañosa, and A. Planes, “Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory materials”, in ed. K.H.J. Buschow (Elsevier: Amsterdam, 2011), Handbook of Magnetic Materials, 19, 231–289.

    Google Scholar 

  6. T. Krenke et al., “Giant magnetocaloric effect driven by by structural transitions”, Nat. Mater., 4 (2005), 450–454.

    Article  Google Scholar 

  7. R. Kainuma et al., “Magnetic field-induced shape recovery by reverse phase transformation”, Nature (London), 439 (2006), 957–960.

    Article  Google Scholar 

  8. H.E. Karaca, et al., “Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory single crystal”, Acta Mater., 54, (2006), 233–245.

    Article  Google Scholar 

  9. J.Liu et al., “Giant magnetocaloric effect driven by structural transitions”, Nature Mater., 11 (2012), 620–626.

    Article  Google Scholar 

  10. V.V. Sokolovskiy et al., “First-principles investigation of chemical and structural disorder in magnetic Ni2Mn1+xSn1-x Heusler alloys”, Phys. Rev. B, 86 (2012), 134418.

    Article  Google Scholar 

  11. P. Entel et al., “Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles”, EPJB, 86 (2013), 65–75.

    Article  Google Scholar 

  12. N. Singh and R. Arróyave, “Magnetocaloric effects in Ni-Mn-Ga-Fe alloys using Monte Carlo simulations”’, J. Appl. Phys., 113 (2013), 183904.

    Article  Google Scholar 

  13. D. Comtesse et al., “First-principles calculation of the instbility leading to giant inverse magnetoccaloric effects”, Phys. Rev. B, 89 (2014), 184403.

    Article  Google Scholar 

  14. V.V. Sokolovskiy et al., ”Ab initio and Monte Carlo approaches for the magn-tocaloric effect in Co and In-doped Ni-Mn-Ga Heusler alloys”. submitted to Entropy (2014).

    Google Scholar 

  15. J.M. Barandiaran et al., ”Magnetic influence on the martensitic transformaion entropy in Ni-Mn-In metamagnetic alloy”, Appl. Phys. Lett., 102 (2013), 071904.

    Article  Google Scholar 

  16. M. Ogura, C. Takahashi, and H. Akai, “Calculated electronic structures and Néel temperatures of half-metallic diluted antiferromagnetic semiconductors” J. Physics: Condens. Matter, 19 (2007) 365226.

    Google Scholar 

  17. The Munich SPR-KKR pacakage, version 6.3. H. Ebert, D. K¨odderitzsch, and J. Minár, “Calculating condensed matter properties using the KKR-Green’s function method — recent developments and applications”, Rep. Prog. Phys., 74 (2011), 09650.

    Article  Google Scholar 

  18. P. Entel et al., “Interacting magnetic cluster-spin glasses and strain glasses in Ni-Mn based Heusler structured intermetallics” Phys. Status Solidi B, (2014), DOI 10.1002/pssb.201451059.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Entel, P., Arróyave, R., Singh, N., Sokolovskiy, V.V., Buchelnikov, V.D. (2015). Calculation of Electronic Structure and Field Induced Magnetic Collapse in Ferroic Materials. In: Karaman, I., Arróyave, R., Masad, E. (eds) Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015). Springer, Cham. https://doi.org/10.1007/978-3-319-48766-3_42

Download citation

Publish with us

Policies and ethics