Skip to main content

Pt-doped TiO2 nanoparticles for photocatalytic degradation of phenols in wastewater

  • Chapter
REWAS 2013
  • 1000 Accesses

Abstract

Pt-doped TiO2 nanoparticles catalysts were synthesized and evaluated for UV photocatalytic degradation of phenol and 2-chlorophenol (2-CP) in synthetic wastewater solutions. The catalysts were synthesized by immobilizing colloidal Pt nanoparticles onto titanium dioxide (rutile TiO2). Several analytical tools, such as standard BET isotherms, X-ray diffraction (XRD), transmission electron microscope (TEM), were used to investigate the specific surface area, structure, and size distribution of the catalysts and its components. The catalytic activity was measured in a batch photoreactor containing solutions of phenol and 2-CP independently, with UV irradiation of 450 W. UV-visible spectrophotometer was used for analyzing the concentration of phenols in solution at different time intervals during the photodegradation experiment. Parameters affecting the photocatalytic process such as concentration of the catalyst, solution pH, and phenols concentration have been investigated. Results obtained revealed that Pt/TiO2 showed a higher activity for UV- photocatalytic degradation of both phenol and 2-CP pollutants in solution (as compared to the rutile TiO2).. The degradation efficiency values were 87.7 and 100% for both of phenol and 2-Cp, respectively, under optimized conditions (0.5 g/L catalyst with a pollutant concentration of 50 mg/L after irradiation time of 180 minutes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. 2000 Rev. 1, 1e21.

    Google Scholar 

  2. M. A. Barakat, Y. T. Chen, C. P. Huang, Removal of toxic cyanide and Cu (II) ions from water by illuminated TiO2 catalyst J. Applied catalysis B: Environmental 2004, 53,13–20.

    Article  Google Scholar 

  3. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. 2008 Rev. 9, 1e12.

    Google Scholar 

  4. S. Malato, Ez, P. Ferna´ndez-Iba´n˜, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 2009,147, 1e59.

    Google Scholar 

  5. A.D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Compostrini, M. Ischia, R. Ceccato, Palmisano. L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermo-hydrolysis of TiCl4 in aqueous chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 317, 366–376.

    Article  Google Scholar 

  6. M.A. Barakat, Adsorption behavior of copper and cyanide ions at TiO2–solution interface. J. Colloid and Interface Science 2005, 291, 345–352.

    Article  Google Scholar 

  7. J.M. Hermann, Heterogenous photocatalysis: fundamentals and applications to the removal of various types of aquas pollutants. Catal.Today 1999,53: 115–129.

    Article  Google Scholar 

  8. C. Hu, Y.Z. Wang, H.X. Tang, Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere 2000 41: 1205–1209.

    Article  Google Scholar 

  9. I. E. Braun, M. S. Pelizzetti, (ed.), Photochemical Conversion and Storage of Solar Energy, Kluwer, Dordrecht. 1991.

    Google Scholar 

  10. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol 1995, A. 85: 247–255.

    Article  Google Scholar 

  11. I. Shiyanovskaya, M. Hepel, Isotopic effects in cation-injected electrochromic films. J. Electrochem. Soc. 1998, 145: 1023–1028.

    Article  Google Scholar 

  12. K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, W.I. Lee, Preparation of Transparent particulate MoO3/TiO2 and WO3/TiO2 film and their photocatalytic properties. Chem. Mater. 2001, 13: 2349–2355.

    Article  Google Scholar 

  13. B. Pal, T. Hata, K. Goto, G. Nogami, Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts. J. Mol. Catal. A: Chem. 2001,169: 147–155.

    Article  Google Scholar 

  14. I. Bedja, P.V. Kamat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites. J. Phys. Chem. 1995. 99: 9182–9188.

    Article  Google Scholar 

  15. A. A. Aal, M.A. Barakat, R.M. Mohamed Electrophoreted Zn-TiO2–ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol. Applied Surface Science 2008, 254: 4577–4583.

    Article  Google Scholar 

  16. Y. Cao, H. Tan, T. Shi, T. Tang, J. Li, Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water. Journal of Chemical Technology and Biotechnology 2008, 83:546–552

    Article  Google Scholar 

  17. M.M. Behnajady, N. Modirshahla, B. Rad, Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods. Global NEST Journal 2008, 10: 1–7.

    Google Scholar 

  18. A.M. Barakat, M.A. Kanjwal, S.S. Al-Deyab, I.S. Chronakis, H.Y. Kim, Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO2 Nanofibers. Materials Sciences and Applications 2011, 2: 1188–1193.

    Article  Google Scholar 

  19. Q. Xiangchun, S. Hanchang, W. Jainlong, Q. Yi, Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture. Chemosphere 2003, 50: 1069–1074.

    Article  Google Scholar 

  20. K.D. Raung, Theory and practice for the removal of phenols in wastewater. Industrial Pollution Prevention and Control 1984, 3 (3): 88–103.

    Google Scholar 

  21. M. R. Heidi, M. W. Chien, Y. Tao, K. Jun-Kyoung, D. M. William, Catalytic hyrodechlorination of chlorophenols in aqueous solution under mild conditions. 2004, Applied Catalysis A: General, 271: 137–143.

    Article  Google Scholar 

  22. D. Liu, R.J. Maguire, G. Pacepavicius, B.J. Dutka, Biodegradation of recalcitrant chlorophenols by cometabolism. Environmental Toxicology and Water Quality 1991, 6: 85–95.

    Article  Google Scholar 

  23. D.H. Han, S.Y. Cha, H.Y. Yang, Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study, Water Research 2004., 38, 2782.

    Article  Google Scholar 

  24. A. Alinsafi, F. Evenou, E.M. Abdulkarim, M.N. P. Zahraa, A. Benhammou, A. Yaacoubi, A. Nejmeddine, Treatment of textile industry wastewater by supported photo catalysis. 2007, Dyes and Pigments, 74, 439–445.

    Article  Google Scholar 

  25. R.H. Mills, D. W. Davies, Chem. Soc. Rev. 1993, 22, 417–425.

    Article  Google Scholar 

  26. E. Bessa, G.L. Sant’Anna, M. Dezotti, Photocatalytic/H2O2 treatment of oil field produced waters. Appl. Catal. B: Environ. 2001, 29, 125–134.

    Article  Google Scholar 

  27. E.R.L. Tiburtius, P. Peralta-Zamora, A. Emmel, Treatment of gasolinecontaminated waters by advanced oxidation processes. J. Hazard. Mater. 2005, 126, 86–90.

    Article  Google Scholar 

  28. L.-H. Cho, Y.-G. Kim, J.-K. Yang, N.-H. Lee, S.-M. Lee, Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO2 photocatalysis and solar photo-Fenton. J. Environ. Sci. Health A 2006, 41, 457–473.

    Article  Google Scholar 

  29. S. Contreras, M. Rodriguez, F. Al Momani, C. Sans, S. Esplugas, Contribution of the ozonation pretreatment to the biodegradation of aqueous solutions of 2,4 dichlorophenol. Water Research 2003, 37: 3164–3171.

    Article  Google Scholar 

  30. Ch. Wang, Ch. M. Lee, Ch. J. Lu, M. Sh. Chuang, Ch. Z. Huang, Biodegradation of 2,4,6 — trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 2000, 41: 1873–1879.

    Article  Google Scholar 

  31. R.U. Edgehill, R.F. Finn, Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Eur. J. Appl. Microbiol. Biotechnol 1982, 16:179–184.

    Article  Google Scholar 

  32. M.P. Ormad, J.L. Ovelleiro, J. Kiwi, Photocatalytic degradation of concentrated solutions of 2,4-dichlorophenol using low energy light: identification of intermediates. Applied Catalysis B:Environmental 2001., 32 (3): 157–166.

    Article  Google Scholar 

  33. Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chem. Mater. 2000, 12, 1622–1627.

    Article  Google Scholar 

  34. T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition. J. Phys. Chem. B 1999, 103, 3818–3827.

    Article  Google Scholar 

  35. R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang, G. A. Somorjai, High-Surface-Area Catalyst Design: Synthesis, Characterization, and Reaction Studies of Platinum Nanoparticles in Mesoporous SBA-15 Silica. Journal of Physical Chemistry B 2005, 109, 2192–2202.

    Article  Google Scholar 

  36. H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, G. A. Somorjai, Hydrothermal growth of Mesporous SBA-15 Silica in the Presence of PVP-stabilized Pt Nanoparticles: Synthesis, Characterization, and Catalytic Properties. Journal of American Chemical Society 2006, 128, 3027–3037.

    Article  Google Scholar 

  37. J. N. Kuhn, W. Huang, C.-K. Tsung, Y. Zhang, G. A. Somorjai, Structure Sensitivity of Carbon-Nitrogen Ring Opening: Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica Journal of American Chemical Society 2008, 130, 14026–14027.

    Article  Google Scholar 

  38. M. A. Barakat, R. I., Al-Hutailah, M. H. Hashim, E. Qayyum, J.N. Kuhn, Titania-Supported Silver-based Bimetallic Nanoparticles as Photocatalysts, Environmental Science and Pollution Research (accepted, under publication).

    Google Scholar 

  39. M. Qamar, M. Muneer, D. Bahnemann, Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Journal of Environmental Management 2006., 80: 99–106.

    Article  Google Scholar 

  40. F. Akbal, A. N. Onar, Photocatalytic degradation of phenol. Environmental Monitoring and Assessment 2003, 83: 295–302.

    Article  Google Scholar 

  41. K. Naeem, O. Feng, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Sciences 2009, 21, 527–533.

    Article  Google Scholar 

  42. S. F. Chen, Y. Z. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 2007, 67(5), 1010–1017.

    Article  Google Scholar 

  43. M.A. Barakat, H. Schaeffer, G. Hayes, S.I. Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. J. Applied catalysis B: Environmental 2004, 57, 23–30.

    Article  Google Scholar 

  44. M. A. Barakat, J. M. Tseng, C. P. Huang, Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. J. Applied catalysis B: Environmental 2005, 59, 99–104.

    Article  Google Scholar 

  45. H. Wang, Z. Wu, Y. Liu, W. Wang, Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere 2008, 74, 773–778.

    Article  Google Scholar 

  46. Barakat, N.A.M.; Kanjwal, M.A.; Al-Deyab, S.S.; Chronakis, I.S.; Kim, H.Y. Influences of silver-doping on the crystal structure, morphology and photocatalytic activity of TiO2 nanofibers, Materials Sciences and Applications 2011, 2, 1188–1193.

    Article  Google Scholar 

  47. N.A.M. Barakat, K. D. Woo, M. A. Kanjwal, K. E. Choi, M. S. Khil, H.Y. Kim, Surface plasmon resonances, optical properties and electrical conductivity thermal hystersis of silver nanofibers produced by electrospin-ning Ttechnique. Langmuir 2008, 24,11982–11987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Barakat, M.A., Al-Hutailah, R.I., Qayyum, E., Kuhn, J.N. (2013). Pt-doped TiO2 nanoparticles for photocatalytic degradation of phenols in wastewater. In: Kvithyld, A., et al. REWAS 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-48763-2_33

Download citation

Publish with us

Policies and ethics