Skip to main content

Preparation and Characterization of Fibrous Copper Powder used for Conductive Filler

  • Chapter
REWAS 2013
  • 981 Accesses

Abstract

A novel two-stage process is investigated for preparing the fibrous copper powder used for conductive filler in conductive paste. Based on thermodynamic simulation of Cu(II) — C2O4 2- -NH3 — NH4 + — H2O system, the rod-shape copper oxalate salt is synthesized firstly with coordination precipitation method, using ammonium oxalate and a purified copper salt solution which could be from either primary or secondary copper-bearing resources. According to the results of XRD, element analysis and X-ray single crystal diffraction, it can be inferred that the composition of the copper oxalate salt is [Cu(NH3)3]C2O4 • xH2O, and the NH3 plays a significant role in the formation of rod-shape crystal. Secondly, the copper oxalate salt is decomposed to fibrous copper powder at 350°C in inert atmosphere. The thermo-decomposition procedure is characterized by TG-DSC-FTIR, XRD and SEM. It is found that the phase of copper oxalate salt transforms as following: [Cu(NH3)3]C2O4 • xH2O→ [Cu(NH3)3]C2O4→ CuC2O4→Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boudenne. Handbook of Multiphase Polymer Systems[M]. John Wiley and Sons, 2011: 427–431

    Google Scholar 

  2. H. Koshikawa, H. Usui, Y. Maekawa. Thermally stable and anisotropically conducting membranes consisting of sub-micron copper wires in polyimide ion track membranes [J]. Journal of Membrane Science, 2009, 327(1–2): 182–187

    Article  Google Scholar 

  3. D.J. Amarasekera. Conductive plastics for electrical and electronic applications [J]. Reinforced Plastics, 2005, 49(8): 38–41

    Article  Google Scholar 

  4. J.E. Mark. Some Novel Polymeric Nanocomposites[J]. Ace. Chem. Res., 2006, 39 (12): 881–888

    Article  Google Scholar 

  5. H.M. Ma, X.L. Gao. A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers [J]. Polymer, 2008, 49(19): 4230–4238

    Article  Google Scholar 

  6. O.D. Neikov, S.S. Naboychenko, I.V. Murashova, et al. Handbook of Non-Ferrous Metal Powders — Technologies and Applications[M]. Elsevier, 2009: 331–367

    Google Scholar 

  7. E. Comini, G. Faglia, M. Ferroni, et al. Physical Vapor Deposition of Copper Oxide Nanowires[J]. Procedia Engineering, 2010,5: 1051–1054

    Article  Google Scholar 

  8. Y. Konishi, M. Motoyama, H. Matsushima, et al. Electrodeposition of Cu nanowire arrays with a template[J]. Journal of Electroanalytical Chemistry, 2003, 559: 149–153

    Article  Google Scholar 

  9. X.B. Cao, F. Yu, L.Y. Li, et al. Copper nanorod junctions templated by a novel polymer-surfactant aggregate[J]. Journal of Crystal Growth, 2003, 254(1–2): 164–168

    Article  Google Scholar 

  10. T. Ahmad, A. Ganguly, J. Ahmed, et al. Nanorods of transition metal oxalates: A versatile route to the oxide nanoparticles[J]. Arabian Journal of Chemistry, 2011, 4(2):125–134

    Article  Google Scholar 

  11. Z.G. Jia, L.H. Yue, YF. Zheng, et al. The convenient preparation of porous CuO via copper oxalate precursor[J]. Materials Research Bulletin, 2008, 43(8–9): 2434–2440

    Article  Google Scholar 

  12. X.J. Zhang, D.G Zhang, X.M. Ni, et al. Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate[J]. Solid-State Electronics, 2008, 52(2): 245–248

    Article  Google Scholar 

  13. N. Jongen, P. Bowen, J. Lemaitre, et al. Precipitation of Self-Organized Copper Oxalate Polycrystalline Particles in the Presence of Hydroxypropylmethylcellulose (HPMC): Control of Morphology [J]. Journal of Colloid and Interface Science, 2000, 226(2): 189–198

    Article  Google Scholar 

  14. T. Ahmad, R. Chopra, R.V. Kandalam, et al. Nanorods of copper and nickel oxalates synthesized by the reverse micellar route [J]. Journal of Nanoscience and Nanotechnology, 2005, 5(11): 1840–1845

    Article  Google Scholar 

  15. M.Y. Li, W.S. Dong, C.L. Liu, et al. Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires[J]. Journal of Crystal Growth, 2008, 310(21): 4628–4634

    Article  Google Scholar 

  16. C.W. Bale, P. Chartrand, S.A. Degterov,et al. FactSage Thermochemical Software and Databases [J]. Calphad, 2002, 26(2): 189–228

    Article  Google Scholar 

  17. C.W. Bale, E. Bélisle, P. Chartrand, et al. FactSage Thermochemical Software and Databases — Recent Developments [J]. Calphad, 2009, 33(2): 295–311

    Article  Google Scholar 

  18. Y.Q. Fan, C.F. Zhang, J. Zhan, et al. Thermodynamic equilibrium calculation on preparation of copper oxalate precursor powder. Trans. Nonferrous Met. Soc. China, 2008, 18(2): 454–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Fan, Y., Yang, Y., Xiao, Y., Zhao, Z. (2013). Preparation and Characterization of Fibrous Copper Powder used for Conductive Filler. In: Kvithyld, A., et al. REWAS 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-48763-2_13

Download citation

Publish with us

Policies and ethics