Skip to main content

Abstract

The influence of corrosion potential and time of exposure on intergranular oxidation and embrittlement in Alloy 600 has been investigated in simulated primary water. The corrosion potential was observed to have a very significant influence on the proportion of embrittled grain boundaries. A maximum in grain boundary embrittlement was observed at 30 kPa of hydrogen partial pressure while little and almost no embritlement was observed at, respectively, less than 1 kPa and 650 kPa, in good agreement with the known influence of dissolved hydrogen concentration on PWSCC initiation and growth. A significant increase in the depths of intergranular oxide penetration and in grain boundary embritlement was observed with exposure time, the maximum depth of oxide penetrations increasing from 0.6 µm after 500 h, to 2.2 ¡am after 1500h, and up to 5 μm after 4500h of exposure. Intergranular oxide penetrations were also characterized by TEM in order to get insights into the mechanism(s). Cr-depletion was observed ahead of one of the intergranular oxide penetrations, suggesting that accelerated mass transport may play an important role in the oxide penetration process. Accelerated mass transport may also explain the presence of a hexagonal Cr7S8 particle observed just beyond the tip of an intergranular oxide penetration ending at a Cr carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M. Scott and M. Le Calvar, Some possible mechanisms of intergranular stress corrosion cracking of Alloy 600 in PWR primary water, Proc of Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, 1993, p. 657–665.

    Google Scholar 

  2. T.S. Gendron, et al., Oxygen Embrittlement of Alloy 600 in Hydrogenated Steam at 400° C, in Corrosion-Deformation Interactions, CDI’96, T. Magnin, Editor, 1996, The Institute of Materials, p. 484–495.

    Google Scholar 

  3. R.C. Newman, T.S. Gendron, and P.M. Scott, Internal Oxidation and Embrittlement of Alloy 600. Proc of Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, 1999, Newport Beach, Ca, USA, TMS, p. 79–92.

    Google Scholar 

  4. J. Panter, Etude de la corrosion sous contrainte des alliages 600 et 690 en milieu primaire de réacteur à eau sous pression (REP) — Influence des procédés de fabrication des tubes de générateurs de vapeur sur la phase d’amorçage. PhD thesis, 2002, INP de Toulouse.

    Google Scholar 

  5. F. Carrette, Relâchement des produits de corrosion des tubes en alliage 690 de générateurs de vapeur du circuit primaire des réacteurs à eau pressurisée. PhD Thesis, 2002, INP de Toulouse.

    Google Scholar 

  6. J. Deleume. 2004, ENNSCT, Toulouse, France. DEA report.

    Google Scholar 

  7. F. Delabrouille, Caractérisation par MET de fissures de corrosion sous d’alliages à base de nickel: influence de la teneur en chrome et de la chimie du milieu. PhD Thesis, 2004, INP de Toulouse.

    Google Scholar 

  8. T. Cassagne, A.F. Gourgues, and A. Gelpi, Corrosion sous Contrainte de l’alliage 600: les mécanismes en question. La Revue de Métallurgie-CIT, 1993, p. 1165.

    Google Scholar 

  9. A.F. Gourgues, et al., Determination of the High Temperature Mechanical Behaviour of Alloy 600 in Air; Applicability to Stress Corrosion Cracking in PWR Primary Water, in CDI’96, T. Magnin, Editor, 1997, p. 453–462.

    Google Scholar 

  10. T. Cassagne et al., An update on the influence of hydrogen on the PWSCC of nickel base alloys in high temperature water. Proc of 8th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Amelia Island, FL, August 10–14 1997.

    Google Scholar 

  11. D. Morton et al., Primary water SCC understanding and characterization through fundamental testing in the vicinity of the nickel/nickel oxide phase transitions. Proc of 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Lake Tahoe, August 5–9 2001.

    Google Scholar 

  12. K. Norring and J. Engtrom, Initiation of PWSCC in Nickel Base Alloys in Primary PWR Environment. Overview of efforts at Studsvik Since Mid 1980s, Proceeding of the European Corrosion Congress EUROCORR 2007, Freiburg, Germany, September 2007.

    Google Scholar 

  13. C. Soustelle et al., A parametric study of PWSCC of Alloy 600. Proceedings of the European Corrosion Congress EUROCORR 1998, Utrecht, Netherlands, September 1998.

    Google Scholar 

  14. D. Morton et al., SCC Initiation Testing of Nickel-Based Alloys in High Temperature Water. Proc of Fourteenth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, Virginia Beach, 2009.

    Google Scholar 

  15. F. Carrette, L. Guinard, and B. Pieraggi, Kinetics of corrosion products release from nickelbase alloys corroding in primary water conditions: a new modelling of release. in 9th International Conference on Water Chemistry of Nuclear Reactor Systems, 2002, Avignon, France, SFEN.

    Google Scholar 

  16. F. Carrette, et al., Analysis and TEM examinations of corrosion scales grown on alloy 690 exposed to PWR environment. Materials at High Temperature, 2003, 20, p. 581–591.

    Article  Google Scholar 

  17. P. Laghoutaris, Corrosion sous contrainte de l’alliage 600 en milieu primaire des réacteurs à eau sous pression: apport à la compréhension des mécanismes. Thesis, Ecole des Mines de Paris, 2009.

    Google Scholar 

  18. L. E. Thomas and S. M. Bruemmer, Insights into Environmental Degradation Mechanisms from Analytical Transmission Electron Microscopy of SCC Cracks. Proc of Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, 1999, Newport Beach, Ca, USA, TMS, p. 41–47.

    Google Scholar 

  19. H.W. Pickering and C. Wagner, Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc., 1967, 114, p. 698.

    Article  Google Scholar 

  20. M. Seo and N. Sato, Selective Oxidation of Fe-30Ni Alloy in a Low-Temperature Range (433–473 K). Oxidation of Metals, 1983, 19(3/4), p. 151–163.

    Article  Google Scholar 

  21. E.P. Simonen, L.E. Thomas, and S.M. Bruemmer, Diffusion Kinetic Issues during Intergranular Corrosion of Ni-Base Alloys. in CORROSION’ 2000, paper # 226, 2000.

    Google Scholar 

  22. G. Moulin, M. Aucouturier, P. Lacombe, “Etude expérimentale de la pénétration du soufre dans les alliages Ni-Cr-Fe (77/16/7) de type Inconel 600. I. Pénétration du soufre conduisant à la formation de sulfures”. Journal of Nuclear Materials 82 (1979) 347–371.

    Article  Google Scholar 

  23. G. Moulin, M. Aucouturier, P. Lacombe, “Etude expérimentale de la pénétration du soufre dans les alliages Ni-Cr-Fe (77/16/7) de type Inconel 600. II. Diffusion du soufre sous forme atomique”. Journal of Nuclear Materials 82 (1979) 372–385.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Fournier, L., Calonne, O., Combrade, P., Scott, P., Chou, P., Pathania, R. (2011). Grain boundary oxidation and embrittlement prior to crack initiation in Alloy 600 in PWR primary water. In: Busby, J.T., Ilevbare, G., Andresen, P.L. (eds) Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors. Springer, Cham. https://doi.org/10.1007/978-3-319-48760-1_92

Download citation

Publish with us

Policies and ethics