Skip to main content

Abstract

Nickel-base alloys such as alloy 600 (Ni-16Cr-9Fe) are known to exhibit intergranular stress corrosion cracking (IGSCC) at pressurized water reactor (PWR) primary water environments. From the microscopic observations, it was found that oxygen plays a role in primary water stress corrosion cracking (PWSCC) of nickel-base alloys and Scott suggests an internal oxidation model. However, it was found that needed oxygen diffusivity to explain the internal oxidation model should be several orders greater than the measured oxygen diffusivity. In this study, oxygen diffusion coefficients in the nickel-base alloys were evaluated by atomistic modeling of oxygen diffusion process based on the proposed vacancy-mediated diffusion model. Density functional theory is used to calculate the energy of a system. Activation barrier energy of diffusion of atomic oxygen is quantified by finding minimum energy path through the most favorable path. Phonon analysis is performed using the direct force-constant method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scott, P.M. and M. Le Calvar. Some Possible Mechanisms on Intergranular stress Corrosion Cracking Alloy 600 in PWR Primary Water. in sixth International Symposium on Environmental Degradation of Material in Nuclear Power Systems — Water Reactors. 1993. an Diego, CA.

    Google Scholar 

  2. Alcock, C.B. and P.B. Brown, Physicochemical Factors in the Dissolution of Thoria in Solid Nickel. Metal Science, 1969. 3: p. 116–120.

    Article  Google Scholar 

  3. Barlow, R. and P.J. Grundy, The determination of the diffusion constants of oxygen in nickel and a-iron by an internal oxidation method. Journal of Materials Science, 1969. 4(9): p. 797–801.

    Article  Google Scholar 

  4. Goto, S., K. Nomaki, and S. Koda, Internal Oxidation of Nickel Alloys Containing a Small Amount of Chromium. The Journal of the Japan Institute of Metals, 1967. 31(4): p. 7.

    Article  Google Scholar 

  5. Iacocca, R. and D. Woodford, The kinetics of intergranular oxygen penetration in nickel and its relevance to weldment cracking. Metallurgical and Materials Transactions A, 1988. 19(9): p. 2305–2313.

    Article  Google Scholar 

  6. Kerr, R.A., Thesis. 1972, The Ohio State University.

    Google Scholar 

  7. Lloyd, G. and J.W. Martin, The Diffusivity of Oxygen in Nickel Determined by Internal Oxidation of Dilute Ni-Be Alloys. Metal Science, 1972. 6: p. 7–11.

    Article  Google Scholar 

  8. Lloyd, G.J. and J.W. Martin, The Diffusivity of Oxygen in Nickel Determined by Internal Oxidation of Dilute Ni-Be Alloys. Metal Science, 1973. 7: p. 75–75.

    Article  Google Scholar 

  9. Park, J.-W. and C. Altstetter, The diffusion and solubility of oxygen in solid nickel. Metallurgical and Materials Transactions A, 1987. 18(1): p. 43–50.

    Article  Google Scholar 

  10. Seybolt, A.U., Dissertation. 1936, Yale University: New Haven, CT.

    Google Scholar 

  11. Zholobov, S.P. and M.D. Malev, Diffusion of Oxygen in a Metal in Electron Bombardment of the Surface. Soviet Physics Technical Physics, 1971. 16: p. 488.

    Google Scholar 

  12. Megchiche, E.H., M. Amarouche, and C. Mijoule, First-principles calculations of the diffusion of atomic oxygen in nickel: Thermal expansion contribution. Journal of Physics Condensed Matter, 2007. 19(29).

    Google Scholar 

  13. Young, G.A., et al. The mechanism and modeling of intergranular stress corrosion cracking of nickel-chromium-iron alloys exposed to high purity water. 2005.

    Google Scholar 

  14. Garruchet, S., et al., Diffusion of oxygen in nickel: A variable charge molecular dynamics study. Solid State Communications, 2010. 150(9–10): p. 439–442.

    Article  Google Scholar 

  15. Wert, C. and C. Zener, Interstitial Atomic Diffusion Coefficients. Physical Review, 1949. 76(8): p. 1169.

    Article  Google Scholar 

  16. Wert, C.A., Diffusion Coefficient of C in alpha -Iron. Physical Review, 1950. 79(4): p. 601.

    Article  Google Scholar 

  17. Zener, C., Theory of Diffusion, in Imperfections in Nearly Perfect Crystals, W. Shockley, Editor. 1952, John.Wiley&Sons, INC. p. 289–316.

    Google Scholar 

  18. Heinola, K. and T. Ahlgren, Diffusion of hydrogen in bcc tungsten studied with first principle calculations. Journal of Applied Physics, 2010. 107(11): p. 113531–8.

    Article  Google Scholar 

  19. Eyring, H., The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 1935. 3(2): p. 107–115.

    Article  Google Scholar 

  20. Wigner, E., The transition state method. Transactions of the Faraday Society, 1938. 34: p. 29–41.

    Article  Google Scholar 

  21. McNabb, A. and P.K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans. Met. Soc. AIME, 1963. 227: p. 618–27.

    Google Scholar 

  22. Perusin, S., D. Monceau, and E. Andrieu, Investigations on the Diffusion of Oxygen in Nickel at 1000 °C by SIMS Analysis. Journal of the Electrochemical Society, 2005. 152(12): p. E390-E397.

    Article  Google Scholar 

  23. Le Claire, A.D. and A.B. Lidiard, LIII. Correlation effects in diffusion in crystals. Philosophical Magazine, 1956. 1(6): p. 518–527.

    Article  Google Scholar 

  24. Mantina, M., et al., 3d transition metal impurities in aluminum: A first-principles study. Physical Review B, 2009. 80(18): p. 184111.

    Article  Google Scholar 

  25. Mantina, M., et al., First principles impurity diffusion coefficients. Acta Materialia, 2009. 57(14): p. 4102–4108.

    Article  Google Scholar 

  26. Mijoule, C., et al., First-principle calculation of monovacancy and divacancy interactions with atomic oxygen in nickel: Thermal expansion effects. Defect and Diffusion Forum, 2009. 289–292: p. 747–753.

    Article  Google Scholar 

  27. Marcus, P.M., J.E. Demuth, and D.W. Jepsen, Determination of the structure of ordered adsorbed layers by analysis of LEED spectra. Surface Science, 1975. 53(1): p. 501–522.

    Article  Google Scholar 

  28. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864.

    Article  Google Scholar 

  29. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133.

    Article  Google Scholar 

  30. Gunnarson, O., B.I. Lundqvist, and S. Lundqvist, Screening in a spin-polarized electron liquid. Solid State Communications, 1972. 11(1): p. 149–153.

    Article  Google Scholar 

  31. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953.

    Article  Google Scholar 

  32. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.

    Article  Google Scholar 

  33. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671.

    Article  Google Scholar 

  34. Perdew, J.P. and Y. Wang, Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Physical Review B, 1992. 46(20): p. 12947.

    Article  Google Scholar 

  35. Wang, Y. and J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B, 1991. 44(24): p. 13298.

    Article  Google Scholar 

  36. Kresse, G., et al., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169.

    Article  Google Scholar 

  37. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B, 1993. 47(1): p. 558.

    Article  Google Scholar 

  38. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, 1976. 13(12): p. 5188.

    Article  Google Scholar 

  39. Wimmer, E., et al., Temperature-dependent diffusion coefficients from ab initio computations: Hydrogen, deuterium, and tritium in nickel. Physical Review B, 2008. 77(13): p. 134305.

    Article  Google Scholar 

  40. Henkelman, G., B.P. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics, 2000. 113(22): p. 9901–9904.

    Article  Google Scholar 

  41. Jónsson, H., G. Mills, and K.W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations. 1998, World Scientific. p. 385.

    Chapter  Google Scholar 

  42. Mills, G., H. Jónsson, and G.K. Schenter, Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surface Science, 1995. 324(2–3): p. 305–337.

    Article  Google Scholar 

  43. Parlinski, K., Z.Q. Li, and Y. Kawazoe, First-Principles Determination of the Soft Mode in Cubic ZrO 2 . Physical Review Letters, 1997. 78(21): p. 4063.

    Article  Google Scholar 

  44. Wei, S. and M.Y. Chou, Ab initio calculation of force constants and full phonon dispersions. Physical Review Letters, 1992. 69(19): p. 2799.

    Article  Google Scholar 

  45. van de Walle, A., M. Asta, and G. Ceder, The alloy theoretic automated toolkit: A user guide. Calphad, 2002. 26(4): p. 539–553.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Nam, H.O., Yoon, J.Y., Kim, J.H., Hwang, I.S., Lee, K.H. (2011). Evaluation of the Oxygen Diffusion Coefficient in Nickel-Base Alloys. In: Busby, J.T., Ilevbare, G., Andresen, P.L. (eds) Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors. Springer, Cham. https://doi.org/10.1007/978-3-319-48760-1_90

Download citation

Publish with us

Policies and ethics