Skip to main content

Abstract

This work deals with the study of the Irradiation Assisted Stress Corrosion Cracking and presents a methodology coupling microstructure,, strain field and crack’s initiation analysis. Its purpose is to improve the understanding of irradiation effects on the mechanical behaviour of internal stainless steel structures in a Pressurized Water Reactor environment.

Proton-irradiations were performed at the Michigan Ion Beam Laboratory on specimen that underwent Slow Strain Rate Tensile tests performed in a Pressurized Water Reactor (PWR) environment. In order to correlate cracks initiation to microstructure, full field analysis is performed at a microscale thanks to a scanning electron microscopy (SEM) digital imaging correlation technique coupled with a crystallographic grain orientation mapping performed on the same area after irradiation. Moreover, cracking features were characterized using SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruemmer S.M., Simonen E., Scott P, Andresen P., Was G., Nelson J.L, Journal of Nuclear Materials 274 (1999) 299–314

    Article  Google Scholar 

  2. Scott P., Journal of Nuclear Materials 211 (1994) 101–122

    Article  Google Scholar 

  3. Andresen P.L, Ford F.P, Murphy S.M, Perks J.M, Proc. Fourth Int’l Symp. On Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors, NACE, 1990, pp. 1–83 to 1–121

    Google Scholar 

  4. Byun T.S, Hashimoto N., Farrell K., Journal of Nuclear Materials 351 (2006) 303–315

    Article  Google Scholar 

  5. Byun T.S, Lee E.H, Hunn J.D., Journal of Nuclear Materials 321 (2003) 29–39

    Article  Google Scholar 

  6. Farell K., Byun T.S, Hashimoto N., Journal of Nuclear Materials 335 (2004) 471–486

    Article  Google Scholar 

  7. Was G.S, Alexandreanu B., Busby J., Advances in Fracture and Failure Prevention, Key Engineering Materials Vols. 261–263 (2004) 885–902

    Article  Google Scholar 

  8. Jiao Z., Was G.S, Journal of Nuclear Materials 408 (2010) 246–256

    Article  Google Scholar 

  9. Onchi T., Dohi K., Soneda N., Cowan J.R, Scowen R.J., Castaño M.L., Journal of Nuclear Materials 320 (2003) 194–208

    Article  Google Scholar 

  10. Onchi T., Dohi K., Soneda N., Navas M., Castaño M.L., Journal of Nuclear Materials 340 (2005) 219–236

    Article  Google Scholar 

  11. Was, Gs; Hash, M; Odette, Rg, Philosophical Magazine, Vol. 85, Issue 4–7, pp. 703 (2005).

    Article  Google Scholar 

  12. Jiao Z., Was G.S, Journal of Nuclear Materials 361 (2007) 218–227

    Article  Google Scholar 

  13. McMurtrey M.D., Was G.S, Patrick L., Farkas D., Materials Science and Engineering A 528 (2011)3730–3740

    Article  Google Scholar 

  14. Karlsen W., Diego G., Devrient B., Journal of Nuclear Materials 406 (2010) 138–151

    Article  Google Scholar 

  15. Kim J.W., Byun T., Journal of Nuclear Materials 396 (2010) 1–9

    Article  Google Scholar 

  16. Kim J.W., Byun T., Journal of Nuclear Materials 396 (2010) 10–19

    Article  Google Scholar 

  17. Sharp J.V, Philosophical Magazine 16 (1967) 77

    Article  Google Scholar 

  18. Tucker R.P, Wechsler M.S, Ohr S.M, Journal of Applied Physics 40 (1969) 400

    Article  Google Scholar 

  19. Jiao Z., Was G.S, Journal of Nuclear Materials 407 (2010) 34–43

    Article  Google Scholar 

  20. Fukuya K., Nishioka H., Fujii K., Miura T., Torimaru T., Journal of Nuclear Materials (2011), doi:10.1016/j.jnucmat.2010.12.301

    Google Scholar 

  21. West E.A., Was G.S, Journal of Nuclear Materials 408 (2010) 142–152

    Article  Google Scholar 

  22. Hoc T., Crépin J., Gélébart L., Zaoui A., Acta Mater, 51/18 (2003) 5479–5490

    Article  Google Scholar 

  23. Heripre E., Dexet M., Crépin J., Gélébart L., Roos A., Bornert M., Caldemaison D., International Journal of Plasticity Vol 23, 9, (2007) 1512–1539

    Article  Google Scholar 

  24. Massoud J.P., Duplex stainless steels 1 (1991) 93

    Google Scholar 

  25. Allais L., Bornert M., Bretheau T., Caldemaison D., Acta Metal. and Mater., 42(11), (1994) 3865–3880

    Article  Google Scholar 

  26. Jiao Z., Was G.S, Journal of Nuclear Materials 382 (2008) 203–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Le Millier, M. et al. (2011). Irradiation assisted stress corrosion cracking of stainless steels in a PWR environment (A combined approach). In: Busby, J.T., Ilevbare, G., Andresen, P.L. (eds) Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors. Springer, Cham. https://doi.org/10.1007/978-3-319-48760-1_79

Download citation

Publish with us

Policies and ethics