Skip to main content

Abstract

Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation buildup in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: δ-ZrH1.6, γ-ZrH, and Є-ZrH2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Coleman. Environmentally assisted failure, volume 6. Elsevier Pergamon, 2003.

    Google Scholar 

  2. S. M. Myers, M. I. Baskes, H. K. Birnbaum, Corbett J. W., Deleo G. G., S. K. Estreicher, E. E. Haller, P Jena, N. M. Johnson, R Kirchheim, S. J. Pearton, and MJ STAVOLA. Hydrogen Interactions With Defects in Crystalline Solids. REVIEWS OF MODERN PHYSICS, 64(2):559–617, APR 1992.

    Article  Google Scholar 

  3. D. S. Shih, I. M. Roberson, and HK BIRNBAUM. Hydrogen Embrittlement of Alpha-Titanium — Insitu TEM Studies. ACTA METALLURGICA, 36(1):111–124, JAN 1988.

    Article  Google Scholar 

  4. D. O. Northwood and U. Kosasih. Hydrides and delayed hydrogen cracking in zirconium and its alloys. International Metals Reviews, 28:92–121, 1983.

    Article  Google Scholar 

  5. Long-Qing Chen. Phase-field models for microstructure evolution. Annual Reviews of Materials Research, 32(113), 2002.

    Google Scholar 

  6. XQ Ma, SQ Shi, CH Woo, and LQ Chen. Simulation of gamma-hydride precipitation in bi-crystalline zirconium under uniformly applied load. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 334(1–2):6–10, SEP 1 2002.

    Article  Google Scholar 

  7. XQ Ma, SQ Shi, CH Woo, and LQ Chen. The phase field model for hydrogen diffusion and gamma-hydride precipitation in zirconium under non-uniformly applied stress. MECHANICS OF MATERIALS, 38(1–2, Sp. Iss. SI):3–10, JAN-FEB 2006. International Symposium on Macro-Meso- Micro and Nano Mechanics of Materials, Hong Kong, PEOPLES R CHINA, DEC 08–10, 2003.

    Article  Google Scholar 

  8. C. Domain, R. Besson, and A. Legris. Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties. Acta Materialia, 50:3513–3526, 2002.

    Article  Google Scholar 

  9. C Domain, R Besson, and B Legris. Atomic-scale ab initio study of the Zr-H system: II. Interaction of H with plane defects and mechanical properties. ACTA MATERIALIA, 52(6):1495–1502, APR 5 2004.

    Article  Google Scholar 

  10. Laurent Holliger, Alexandre Legris, and Remy Besson. Hexagonal-based ordered phases in H-Zr. PHYSICAL REVIEW B, 80(9), SEP 2009.

    Google Scholar 

  11. Weihua Zhu, Rongshan Wang, Guogang Shu, Ping Wu, and Heming Xiao. First-Principles Study of Different Polymorphs of Crystalline Zirconium Hydride. JOURNAL OF PHYSICAL CHEMISTRY C, 114(50):22361–22368, DEC 23 2010.

    Article  Google Scholar 

  12. P. Zhang, B.-T. Wang, C.-H. He, and P. Zhang. First-principles study of ground state properties of zirconium dihydride. ArXiv e-prints, July 2010.

    Google Scholar 

  13. Yutaka Udagawa, Masatake Yamaguchi, Hiroaki Abe, Naoto Sekimura, and Toyoshi Fuketa. Ab initio study on plane defects in zirconium-hydrogen solid solution and zirconium hydride. ACTA MATERIALIA, 58(11):3927–3938, JUN 2010.

    Article  Google Scholar 

  14. Z. Zhao, J. P. Morniroli, A. Legris, A. Ambard, Y. Khin, L. Legras, and M. Blat-Yrieix. Identification and characterization of a new zirconium hydride. JOURNAL OF MICROSCOPY-OXFORD, 232(3):410–421, DEC 2008.

    Article  Google Scholar 

  15. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 71(3):035109, JAN 2005.

    Article  Google Scholar 

  16. John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18):3865–3868, Oct 1996.

    Article  Google Scholar 

  17. Hendrik J. Monkhorst and James D. Pack. Special points for brillouin-zone integrations. Phys. Rev. B, 13(12):5188–5192, Jun 1976.

    Article  Google Scholar 

  18. R. Hill. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. London, 65(349), 1952.

    Google Scholar 

  19. Atsushi Togo, Fumiyasu Oba, and Isao Tanaka. First-principles calculations of the ferroelastic transition between rutile-type and CaCl_2 -type SiO_2 at high pressures. Phys. Rev. B, 78(13):134106, Oct 2008.

    Article  Google Scholar 

  20. Shinsuke Yamanaka, Kazuriho Yamada, Ken Kurosaki, Masayoshi Uno, Kiyoko Takeda, Hiroyuki Anada, Tetsushi Matsuda, and Shinichi Kobayashi. Characteristics of zirconium hydride and deuteride. Journal of Alloys and Compounds, 330–332:99–104, 2002.

    Article  Google Scholar 

  21. E. Zuzek and J.P. Abriata. The H-Zr(Hydrogen-Zirconium) System. Bulletin of Alloy Phase Diagrams, 11(4):385–395, 1990.

    Article  Google Scholar 

  22. K. Niedzwiedz, B. Nowak, and O.J. Zogal. 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1.55 x 2). Journal of Alloys and Compounds, 194(1):47–51, 1993.

    Article  Google Scholar 

  23. E. S. Fisher and C. J. Renken. Single-Crystal Elastic Moduli and the hcp bcc Transformation in Ti, Zr, and Hf. Phys. Rev., 135(2A):A482–A494, Jul 1964.

    Article  Google Scholar 

  24. Hideaki Ikehata, Naoyuki Nagasako, Tadahiko Furuta, Atsuo Fukumoto, Kazutoshi Miwa, and Takashi Saito. First-principles calculations for development of low elastic modulus ti alloys. Phys. Rev. B, 70(17):174113, Nov 2004.

    Article  Google Scholar 

  25. G. J. Ackland. Embrittlement and the bistable crystal structure of zirconium hydride. Phys. Rev. Lett., 80(10):2233–2236, Mar 1998.

    Article  Google Scholar 

  26. P. Souvatzis and O. Eriksson. Ab initio calculations of the phonon spectra and the thermal expansion coefficients of the 4d metals. Phys. Rev. B, 77(2):024110, Jan 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Blomqvist, J., Olofsson, J., Alvarez, AM., Bjerkén, C. (2011). Structure and Thermodynamical Properties of Zirconium Hydrides from First-Principle. In: Busby, J.T., Ilevbare, G., Andresen, P.L. (eds) Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors. Springer, Cham. https://doi.org/10.1007/978-3-319-48760-1_42

Download citation

Publish with us

Policies and ethics