Skip to main content

On the (Parameterized) Complexity of Recognizing Well-Covered \((r,\ell )\)-graphs

  • Conference paper
  • First Online:
  • 1153 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10043))

Abstract

An \((r, \ell )\)-partition of a graph G is a partition of its vertex set into r independent sets and \(\ell \) cliques. A graph is \((r, \ell )\) if it admits an \((r, \ell )\)-partition. A graph is well-covered if every maximal independent set is also maximum. A graph is \((r,\ell )\)-well-covered if it is both \((r,\ell )\) and well-covered. In this paper we consider two different decision problems. In the \((r,\ell )\)-Well-Covered Graph problem (\((r,\ell )\) wcg for short), we are given a graph G, and the question is whether G is an \((r,\ell )\)-well-covered graph. In the Well-Covered \((r,\ell )\)-Graph problem (wc \((r,\ell )\) g for short), we are given an \((r,\ell )\)-graph G together with an \((r,\ell )\)-partition of V(G) into r independent sets and \(\ell \) cliques, and the question is whether G is well-covered. We classify most of these problems into P, coNP-complete, NP-complete, NP-hard, or coNP-hard. Only the cases wc(r, 0)g for \(r\ge 3\) remain open. In addition, we consider the parameterized complexity of these problems for several choices of parameters, such as the size \(\alpha \) of a maximum independent set of the input graph, its neighborhood diversity, or the number \(\ell \) of cliques in an \((r, \ell )\)-partition. In particular, we show that the parameterized problem of deciding whether a general graph is well-covered parameterized by \(\alpha \) can be reduced to the wc \((0,\ell )\) g problem parameterized by \(\ell \), and we prove that this latter problem is in XP but does not admit polynomial kernels unless \(\mathsf{coNP} \subseteq \mathsf{NP} / \mathsf{poly}\).

This work was supported by FAPERJ, CNPq, CAPES Brazilian Research Agencies and EPSRC (EP/K025090/1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstädt, A.: Partitions of graphs into one or two independent sets and cliques. Discrete Math. 152(1–3), 47–54 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chvátal, V., Slater, P.J.: A note on well-covered graphs. Ann. Discret. Math. 55, 179–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  5. Dell, H.: A simple proof that AND-compression of NP-complete problems is hard. Electronic Colloquium on Computational Complexity (ECCC), 21: 75 (2014)

    Google Scholar 

  6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelbreg (2013)

    Book  MATH  Google Scholar 

  8. Drucker, A.: New limits to classical and quantum instance compression. SIAM J. Comput. 44(5), 1443–1479 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Favaron, O.: Very well-covered graphs. Discrete Math. 42, 177–187 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16(3), 449–478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of chordal graphs. Theoret. Comput. Sci. 349(1), 52–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  14. Golzari, R.J., Zaare-Nahandi, R.: Unmixed \(r\)-partite graphs. CoRR, abs/1511.00228 (2015)

    Google Scholar 

  15. Haghighi, H.: A generalization of Villarreal’s result for unmixed tripartite graphs. Bull. Iran. Math. Soc. 40(6), 1505–1514 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Kolay, S., Panolan, F., Raman, V., Saurabh, S.: Parameterized algorithms on perfect graphs for deletion to \((r,\ell )\)-graphs. In: Proceedings of MFCS 2016, vol. 58, LIPIcs, pp. 75: 1–75: 13 (2016)

    Google Scholar 

  17. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lesk, M., Plummer, M.D., Pulleyblank, W.R.: Equi-matchable graphs. In: Graph Theory and Combinatorics. Academic Press, pp. 239–254 (1984)

    Google Scholar 

  19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, vol. 31. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  20. Plummer, M.D.: Some covering concepts in graphs. J. Comb. Theory 8(1), 91–98 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ravindra, G.: Well-covered graphs. J. Comb. Inform. Syst. Sci. 2(1), 20–21 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Sankaranarayana, R.S., Stewart, L.K.: Complexity results for well-covered graphs. Networks 22(3), 247–262 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stockmeyer, L.: Planar \(3\)-colorability is polynomial complete. ACM SIGACT News 5(3), 19–25 (1973)

    Article  MathSciNet  Google Scholar 

  24. Tankus, D., Tarsi, M.: Well-covered claw-free graphs. J. Comb.Theory, Ser. B 66(2), 293–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Topp, J., Volkmann, L.: Well covered and well dominated block graphs and unicyclic graphs. Mathematica Pannonica 1(2), 55–66 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Villarreal, R.H.: Unmixed bipartite graphs. Revista Colombiana de Matemáticas 41(2), 393–395 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to thank the anonymous reviewers for their thorough, pertinent, and very helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Sau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Alves, S.R., Dabrowski, K.K., Faria, L., Klein, S., Sau, I., dos Santos Souza, U. (2016). On the (Parameterized) Complexity of Recognizing Well-Covered \((r,\ell )\)-graphs. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48749-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48748-9

  • Online ISBN: 978-3-319-48749-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics