Skip to main content

Minimum Eccentricity Shortest Path Problem: An Approximation Algorithm and Relation with the k-Laminarity Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10043))

Abstract

The Minimum Eccentricity Shortest Path (MESP) Problem consists in determining a shortest path (a path whose length is the distance between its extremities) of minimum eccentricity in a graph. It was introduced by Dragan and Leitert [9] who described a linear-time algorithm which is an 8-approximation of the problem. In this paper, we study deeper the double-BFS procedure used in that algorithm and extend it to obtain a linear-time 3-approximation algorithm. We moreover study the link between the MESP problem and the notion of laminarity, introduced by Völkel et al. [12], corresponding to its restriction to a diameter (i.e. a shortest path of maximum length), and show tight bounds between MESP and laminarity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999). http://dx.doi.org/10.1137/S0097539796303421

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacsó, G., Tuza, Z., Voigt, M.: Characterization of graphs dominated by induced paths. Discret. Math. 307(7–8), 822–826 (2007). http://dx.doi.org/10.1016/j.disc.2005.11.035

    Article  MathSciNet  MATH  Google Scholar 

  3. Corneil, D.G., Dragan, F.F., Köhler, E.: On the power of BFS to determine a graph’s diameter. Networks 42(4), 209–222 (2003). http://dx.doi.org/10.1002/net.10098

    Article  MathSciNet  MATH  Google Scholar 

  4. Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a dominating path in an at-free graph. Inf. Process. Lett. 54(5), 253–257 (1995). http://dx.doi.org/10.1016/0020-0190(95)00021-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discret. Math. 10(3), 399–430 (1997). http://dx.doi.org/10.1137/S0895480193250125

    Article  MathSciNet  MATH  Google Scholar 

  6. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284–1297 (1999). http://dx.doi.org/10.1137/S0097539795282377

    Article  MathSciNet  MATH  Google Scholar 

  7. Deogun, J.S., Kratsch, D.: Diametral path graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 344–357. Springer, Heidelberg (1995). doi:10.1007/3-540-60618-1_87

    Chapter  Google Scholar 

  8. Deogun, J.S., Kratsch, D.: Dominating pair graphs. SIAM J. Discret. Math. 15(3), 353–366 (2002). http://dx.doi.org/10.1137/S0895480100367111

    Article  MathSciNet  MATH  Google Scholar 

  9. Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21840-3_23

    Chapter  Google Scholar 

  10. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983). http://dx.doi.org/10.1016/0095-8956(83)90079-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Völkel, F., Bapteste, E., Habib, M., Lopez, P., Vigliotti, C.: Read networks and k-laminar graphs. CoRR abs/1603.01179 (2016). arXiv:1603.01179

  13. Yamazaki, K., Bodlaender, H.L., Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. In: Bongiovanni, G., Bovet, D.P., Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 276–287. Springer, Heidelberg (1997). doi:10.1007/3-540-62592-5_79

    Chapter  Google Scholar 

  14. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007). http://dx.doi.org/10.1109/TPAMI.2007.250598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien de Montgolfier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Birmelé, É., de Montgolfier, F., Planche, L. (2016). Minimum Eccentricity Shortest Path Problem: An Approximation Algorithm and Relation with the k-Laminarity Problem. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48749-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48748-9

  • Online ISBN: 978-3-319-48749-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics