Skip to main content

Avian Auditory Processing at Four Different Scales: Variation Among Species, Seasons, Sexes, and Individuals

  • Chapter
  • First Online:
Psychological Mechanisms in Animal Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 5))

Abstract

Previous research on songbirds has typically focused on variation in production of vocal communication signals. These studies have addressed the mechanisms and functional significance of variation in vocal production across species and, within species, across seasons and among individuals (e.g., males of varying resource-holding capacity). However, far less is known about parallel variation in sensory processing, particularly in non-model species. A relationship between vocal signals and auditory processing is expected based on the sender–receiver matching hypothesis. Here, we review our recent comparative studies of auditory processing in songbirds conducted using auditory evoked potentials (AEPs) in a variety of field-caught songbird species. AEPs are voltage waveforms recorded from the scalp surface that originate from synchronous neural activity and provide insight into the sensitivity, frequency resolution, and temporal resolution of the subcortical auditory system. These studies uncovered variation in auditory processing at a number of different scales that was generally consistent with the sender–receiver matching hypothesis. For example, differences in auditory processing were uncovered among species and across seasons that may enhance perception of communication signals in species-specific habitats and during periods of mate selection, respectively. Sex differences were also revealed, often in season-specific patterns, and surprising individual differences were observed in auditory processing of mate attraction signals but not of calls used in interspecific contexts. While much remains to be learned, these studies highlight a previously unrecognized degree of parallel variation in songbirds, existing at diverse hierarchical scales, between production of vocal communication signals and subcortical auditory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term “amplitude modulation” here to refer to the periodic modulation, sinusoidal or otherwise, of the temporal amplitude envelope of a signal.

References

  • Aleksandrov LI, Dmitrieva LP (1992) Development of auditory sensitivity of altricial birds: absolute thresholds of the generation of evoked potentials. Neurosci Behav Physiol 22:132–137

    Article  CAS  PubMed  Google Scholar 

  • Amin N, Gastpar M, Theunissen FE (2013) Selective and efficient neural coding of communication signals depends on early acoustic and social environment. PLoS One 8(4):e61417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey NW (2011) Mate choice plasticity in the field cricket Teleogryllus oceanicus: effects of social experience in multiple modalities. Behav Ecol Sociobiol 65:2269–2278

    Article  Google Scholar 

  • Beckers GJL, TenCate C (2001) Perceptual relevance of species-specific differences in acoustic signal structure in Streptopelia doves. Anim Behav 62:511–518

    Article  Google Scholar 

  • Boersma P, Weenink D (2009) Praat: doing phonetics by computer version 5.1.17 (computer program). http://www.praat.org/. Retrieved 7 May 2009

  • Boncoraglio G, Saino N (2007) Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct Ecol 21:134–142

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Brenowitz EA (2004) Plasticity of the adult avian song control system. Ann NY Acad Sci 1016:560–585. doi:10.1196/annals.1298.006

    Article  CAS  PubMed  Google Scholar 

  • Brittan-Powell EF, Dooling RJ (2004) Development of auditory sensitivity in budgerigars (Melopsittacus undulatus). J Acoust Soc Am 115:3092–3102

    Article  PubMed  Google Scholar 

  • Brittan-Powell EF, Dooling RJ, Gleich O (2002) Auditory brainstem responses in adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 112:999–1008. doi:10.1121/1.1494807

    Article  PubMed  Google Scholar 

  • Calford MB, Webster WR, Semple MM (1983) Measurement of frequency selectivity of single neurons in the central auditory pathway. Hear Res 11:395–401

    Article  CAS  PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle D (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp. 701–730

    Chapter  Google Scholar 

  • Caras ML (2013) Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 34:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caras ML, Brenowitz E, Rubel EW (2010) Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow. J Comp Physiol A 196:581–599

    Article  Google Scholar 

  • Catchpole CK, Slater PJB (2008) Bird song: biological themes and variations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chenoweth SF, Blows MW (2006) Dissecting the complex genetic basis of mate choice. Nature Rev Genet 7:681–692

    Article  CAS  PubMed  Google Scholar 

  • Christie PJ, Mennill DJ, Ratcliffe LM (2004) Pitch shifts and song structure indicate male quality in the dawn chorus of black-capped chickadees. Behav Ecol Sociobiol 55:341–348. doi:10.1007/s00265-003-0711-3

    Article  Google Scholar 

  • Clark DL, Roberts AJ, Uetz GW (2012) Eavesdropping and signal matching in visual courtship displays of spiders. Biol Lett 8:375–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Clinard CG, Tremblay KL, Krishnan AR (2010) Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hear Res 264:48–55

    Article  PubMed  Google Scholar 

  • Coffin AB, Mohr RA, Sisneros JA (2012) Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish. J Neurosci 32:1366–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotton S, Small J, Pomiankowski A (2006) Sexual selection and condition-dependent mate preferences. Curr Biol 16:R755–R765

    Article  CAS  PubMed  Google Scholar 

  • Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84(1):51–74

    Article  PubMed  Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Derryberry E (2009) Ecology shapes birdsong evolution: Variation in morphology and habitat explains variation in white-crowned sparrow song. Am Nat 174:24–33

    Article  PubMed  Google Scholar 

  • Dmitrieva LP, Gottlieb G (1994) Influence of auditory experience on the development of brain-stem auditory evoked potentials in mallard duck embryos and hatchlings. Behav Neural Biol 61:19–28

    Article  CAS  PubMed  Google Scholar 

  • Dolphin WF, Mountain DC (1992) The envelope following response: scalp potentials elicited in the mongolian gerbil using sinusoidally AM acoustic signals. Hear Res 58:70–78. doi:10.1016/0378-5955(92)90010-K

    Article  CAS  PubMed  Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic communication in birds. Academic, New York, pp. 95–130

    Chapter  Google Scholar 

  • Dooling RJ (1992) Hearing in birds. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp. 545–559

    Chapter  Google Scholar 

  • Dooling RJ, Zoloth SR, Baylis JR (1978) Auditory sensitivity, equal loudness, temporal resolving power, and vocalizations in the house finch (Carpodacus mexicanus). J Comp Physiol Psychol 92:867–876

    Article  CAS  PubMed  Google Scholar 

  • Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: RJ D, AN P, RR F (eds) Comparative hearing: birds and reptiles. Springer, New York, pp. 308–359

    Chapter  Google Scholar 

  • Elie JE, Theunissen FE (2015) Meaning in the avian auditory cortex: neural representation of communication calls. Eur J Neurosci 41(5):546–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153

    Article  Google Scholar 

  • Ensminger AL, Fernandez-Juricic E (2014) Individual variation in cone photoreceptor density in house sparrows: implications for between-individual differences in visual resolution and chromatic contrast. PLoS One 9(11):e111854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ficken MS, Popp J (1996) A comparative analysis of passerine mobbing calls. Auk 113:370–380

    Article  Google Scholar 

  • Gall MD, Lucas JR (2010) Sex differences in auditory filters of brown-headed cowbirds (Molothrus ater). J Comp Physiol A 196:559–567

    Article  Google Scholar 

  • Gall MD, Wilczynski W (2014) Prior experience with conspecific signals enhances auditory midbrain responsiveness to conspecific vocalizations. J Exp Biol 217:1977–1982

    Article  PubMed  Google Scholar 

  • Gall MD, Wilczynski W (2015) Hearing conspecific vocal signals alters peripheral auditory sensitivity. Proc R Soc B 282:20150749

    Article  PubMed  PubMed Central  Google Scholar 

  • Gall MD, Brierley LE, Lucas JR (2011) Species and sex effects on auditory processing in brown-headed cowbirds and red-winged blackbirds. Anim Behav 81:973–982

    Article  Google Scholar 

  • Gall MD, Brierley LE, Lucas JR (2012a) The sender-receiver matching hypothesis: support from the peripheral coding of acoustic features in songbirds. J Exp Biol 215:3742–3751

    Article  PubMed  Google Scholar 

  • Gall MD, Henry KS, Lucas JR (2012b) Two measures of temporal resolution in brown-headed cowbirds (Molothrus ater). J Comp Physiol A 198:61–68

    Article  Google Scholar 

  • Gall MD, Ronald K, Bestrom E, Lucas JR (2012c) Effects of habitat and urbanization on the active space of brown-headed cowbird song. J Acoust Soc Am 132:4053–4062

    Article  PubMed  Google Scholar 

  • Gall MD, Salameh TS, Lucas JR (2013) Songbird frequency selectivity and temporal resolution vary with sex and season. Proc R Soc B 280:20122296

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhardt HC (1991) Female mate choice in treefrogs: static and dynamic acoustic criteria. Anim Behav 42:615–635

    Article  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Goense JBM, Feng AS (2005) Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. J Neurobiol 65:22–36

    Article  PubMed  Google Scholar 

  • Gordon SD, Uetz GW (2011) Multimodal communication of wolf spiders on different substrates: evidence for behavioural plasticity. Anim Behav 81:367–375

    Article  Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546

    Article  CAS  PubMed  Google Scholar 

  • Greenewalt CH (1968) Bird song: acoustics and physiology. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hailman JP (2008) Coding and redundancy: man-made and animal-evolved signals. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Hall JW (1992) Handbook of Auditory Evoked Responses. Allyn and Bacon, Boston

    Google Scholar 

  • Hartmann WM (1998) Signals, sound, and sensation. AIP Press, Woodbury

    Google Scholar 

  • He N, Mills JH, Dubno JR (2007) Frequency modulation detection: effects of age, psychophysical method, and modulation waveform. J Acoust Soc Am 122(1):467–477

    Article  PubMed  Google Scholar 

  • Henry KR (2002) Sex- and age-related elevation of cochlear nerve envelope response (CNER) and auditory brainstem response (ABR) thresholds in C57BL/6 mice. Hear Res 170:107–115

    Article  PubMed  Google Scholar 

  • Henry KS, Lucas JR (2008) Coevolution of auditory sensitivity and temporal resolution with acoustic signal space in three songbirds. Anim Behav 76:1659–1671

    Article  Google Scholar 

  • Henry KS, Lucas JR (2009) Vocally correlated seasonal auditory variation in the house sparrow (Passer domesticus). J Exp Biol 212:3817–3822

    Article  CAS  PubMed  Google Scholar 

  • Henry KS, Lucas JR (2010a) Auditory sensitivity and the frequency selectivity of auditory filters in the Carolina chickadee, Poecile carolinensis. Anim Behav 80:497–507

    Article  Google Scholar 

  • Henry KS, Lucas JR (2010b) Habitat-related differences in the frequency selectivity of auditory filters in songbirds. Funct Ecol 24:614–624

    Article  Google Scholar 

  • Henry KS, Gall MD, Bidelman GM, Lucas JR (2011) Songbirds trade off auditory frequency resolution and temporal resolution. J Comp Physiol A 197:351–359

    Article  Google Scholar 

  • Hill SD, Amiot C, Ludbrook MR, Ji WH (2015) Seasonal variation in the song structure of tui (Prosthemadera novaeseelandiae). N Z J Ecol 39(1):110–115

    Google Scholar 

  • Horth L (2007) Sensory genes and mate choice: evidence that duplications, mutations, and adaptive evolution alter variation in mating cue genes and their receptors. Genomics 90:159–175

    Article  CAS  PubMed  Google Scholar 

  • Hultcrantz M, Simonoska R, Stenberg AE (2006) Estrogen and hearing: a summary of recent investigations. Acta Otolaryngol 126:10–14

    Article  CAS  PubMed  Google Scholar 

  • Hurd CR (1996) Interspecific attraction to the mobbing calls of black-capped chickadees (Parus atricapillus). Behav Ecol Sociobiol 38:287–292

    Article  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL, Nicol TG, Kraus N (2005) Brain stem response to speech: a biological marker of auditory processing. Ear Hearing 26:424–434

    Article  PubMed  Google Scholar 

  • Johnson KL, Nicol T, Zecker SG, Bradlow AR, Skoe E, Kraus N (2008) Brainstem encoding of voiced consonant-vowel stop syllables. Clin Neurophysiol 119(11):2623–2635

    Article  PubMed  Google Scholar 

  • Johnstone RA (1995) Sexual selection, honest advertisement and the handicap principle – reviewing the evidence. Biol Rev 70(1):1–65

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577. doi:10.1152/physrev.00029.2003

    Article  CAS  PubMed  Google Scholar 

  • Kidd G Jr, Mason CR, Richards VM, Gallun FJ, Durlach NI (2007) Informational masking. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp. 143–190

    Chapter  Google Scholar 

  • Konishi M (1970) Comparative neurophysiological studies of hearing and vocalizations in songbirds. Z Vgl Physiol 66:257–272

    Article  Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl. J Comp Physiol A 171:695–704

    Article  Google Scholar 

  • Krishnan A, Gandour JT (2009) The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain Lang 110(3):135–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroodsma DE, Miller EH (1996) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca

    Google Scholar 

  • Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21:179–192. doi:10.1016/0378-5955(86)90038-9

    Article  CAS  PubMed  Google Scholar 

  • Lehongre K, Del Negro C (2011) Representation of the bird’s own song in the canary HVC: contribution of broadly tuned neurons. Neuroscience 173:93–109

    Article  CAS  PubMed  Google Scholar 

  • Lohr B, Dooling RJ (1998) Detection of changes in timbre and harmonicity in complex sounds by zebra finches (Taeniopygia guttata) and budgerigars (Melopsittacus undulatus). J Comp Psychol 112:36–47

    Article  CAS  PubMed  Google Scholar 

  • Lohr B, Wright TF, Dooling RJ (2003) Detection and discrimination of natural calls in masking noise by birds: estimating the active space of a signal. Anim Behav 65(4):763–777

    Article  Google Scholar 

  • Lucas JR, Freeberg TM, Krishnan A, Long GR (2002) A comparative study of avian auditory brainstem responses: correlations with phylogeny and vocal complexity, and seasonal effects. J Comp Physiol A 188:981–992

    Article  CAS  Google Scholar 

  • Lucas JR, Freeberg TM, Long GR, Krishnan A (2007) Seasonal variation in avian auditory evoked responses to tones: a comparative analysis of Carolina chickadees, tufted titmice, and white-breasted nuthatches. J Comp Physiol A 193:201–215

    Article  Google Scholar 

  • Lucas JR, Vélez A, Henry KS (2015) Habitat-related differences in auditory processing of complex tones and vocal signal properties in four songbirds. J Comp Physiol A 201:395–410. doi:10.1007/s00359-015-0986-7

    Article  Google Scholar 

  • Lynch KS, Wilczynski W (2005) Gonadal steroids vary with reproductive stage in a tropically breeding female anuran. Gen Comp Endocr 143:51–56

    Article  CAS  PubMed  Google Scholar 

  • Lynch KS, Wilczynski W (2008) Reproductive hormones modify reception of species-typical communication signals in a female anuran. Brain Behav Evol 71:143–150

    Article  PubMed  Google Scholar 

  • Lynch KS, Stanely Rand A, Ryan MJ, Wilczynski W (2005) Plasticity in female mate choice associated with changing reproductive states. Anim Behav 69:689–699

    Article  Google Scholar 

  • Lynch KS, Crews D, Ryan MJ, Wilczynski W (2006) Hormonal state influences aspects of female mate choice in the túngara frog (Physalaemus pustulosus). Horm Behav 49:450–457

    Article  CAS  PubMed  Google Scholar 

  • Maddison CJ, Anderson RC, Prior NH, Taves MD, Soma KK (2012) Soft song during aggressive interactions: seasonal changes and endocrine correlates in song sparrows. Horm Behav 62(4):455–463

    Article  CAS  PubMed  Google Scholar 

  • Marean GC, Burt JM, Beecher MD, Rubel EW (1998) Auditory perception following hair cell regeneration in European starling (Sturnus vulgaris): Frequency and temporal resolution. J Acoust Soc Am 103:3567–3580

    Article  CAS  PubMed  Google Scholar 

  • Marler P, Slabbekoorn H (eds) (2004) Nature’s Music: the science of bird song. Elsevier Academic, San Diego

    Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalizations: I. Temperate habitats. Behav Ecol Sociobiol 2:291–302

    Article  Google Scholar 

  • Miller CT, Bee MA (2012) Receiver psychology turns 20: is it time for a broader approach? Anim Behav 83:331–343

    Article  PubMed  Google Scholar 

  • Mills JH, Schmiedt RA, Schulte BA, Dubno JR (2006) Age-related hearing loss: a loss of voltage, not hair cells. Semin Hear 27:228–236

    Article  Google Scholar 

  • Moore BCJ (1993) Frequency analysis and pitch perception. In: Yost W, Popper A, Fay R (eds) Human psychophysics. Springer, New York, pp. 58–89

    Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  • Mostrom AM, Curry RL, Lohr B (2002) Carolina Chickadee (Poecile carolinensis). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci USA 104(40):15894–15898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Njegovan M, Weisman R (1997) Pitch discrimination in field- and isolation-reared black-capped chickadees (Parus atricapillus). J Comp Psychol 111(3):294–301

    Article  Google Scholar 

  • Noirot IC, Adler HJ, Cornil CA, Harada N, Dooling RJ, Balthazart J, Ball GF (2009) Presence of aromatase and estrogen receptor alpha in the inner ear of zebra finches. Hear Res 252:49–55

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Ochi K, Nishino H, Kenmochi M, Yoshida K (2005) Recovery of human compound action potential using a paired-click stimulation paradigm. Hear Res 203:192–200. doi:10.1016/j.heares.2004.12.001

    Article  PubMed  Google Scholar 

  • Parham K, Zhao HB, Kim DO (1996) Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol 76:17–29

    CAS  PubMed  Google Scholar 

  • Parthasarathy A, Bartlett EL (2011) Age-related auditory deficits in temporal processing in F-344 rats. Neuroscience 192:619–630

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59:640–654. doi:10.1121/1.380914

    Article  CAS  PubMed  Google Scholar 

  • Phillmore LS, Sturdy CB, Weisman RG (2003) Does reduced social contact affect discrimination of distance cues and individual vocalizations? Anim Behav 65:911–922

    Article  Google Scholar 

  • Pichora-Fuller MK, Souza PE (2003) Effects of aging on auditory processing of speech. Int J Audiol 42:S11–S16

    Article  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang KX (2006) Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena and Neophocaena phocaenoides (Cetacea, Phocoenidae). J Acoust Soc Am 119:3173–3180

    Article  PubMed  Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: Implications for animal communication. Am Nat 115:381–399

    Article  Google Scholar 

  • Ríos-Chelén AA, Lee GC, Patriccelli GL (2015) Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds. Behav Ecol Sociobiol 69:1139–1151

    Article  Google Scholar 

  • Ritchison G (1983) Vocalizations of the white-breasted nuthatch. Wilson Bull 95:440–451

    Google Scholar 

  • Rohmann KN, Bass AH (2011) Seasonal plasticity of auditory hair cell frequency sensitivity correlates with plasma steroid levels in vocal fish. J Exp Biol 214:1931–1942

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohmann KN, Deitcher DL, Bass AH (2009) Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes. Mol Biol Evol 26:1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohmann KN, Fergus DJ, Bass AH (2013) Plasticity in ion channel expression underlies variation in hearing during reproductive cycles. Curr Biol 23:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohmann KN, Tripp JA, Genova RM, Bass AH (2014) Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish. J Exp Biol 217:2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronald KL, Fernandez-Juricic E, Lucas JR (2012) Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim Behav 84(6):1283–1294

    Article  Google Scholar 

  • Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N (2005) Auditory training improves neural timing in the human brainstem. Behav Brain Res 156:95–103

    Article  PubMed  Google Scholar 

  • Sanes DH, Woolley SMN (2011) A behavioral framework to guide research on central auditory development and plasticity. Neuron 72(6):912–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74

    Article  CAS  PubMed  Google Scholar 

  • Schrode KM, Bee MA (2015) Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system. J Exp Biol 218:837–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Searcy WA, Nowicki A (2005) The evolution of animal communication. Princeton University Press, Princeton

    Google Scholar 

  • Sisneros JA (2009) Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication. Integr Zool 4:33–42

    Article  PubMed  Google Scholar 

  • Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305:404–407

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at higher pitch in urban noise. Nature 424:267

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Smith TB (2002) Bird song, ecology, and speciation. Philos Trans R Soc Lond B Biol Sci 357:493–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Sockman KW, Gentner TQ, Ball GF (2002) Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings. Proc Biol Sci 269:2479–2485

    Article  PubMed  PubMed Central  Google Scholar 

  • Sockman KW, Gentner TQ, Ball GF (2005) Complementary neural systems for the experience-dependent integration of mate-choice cues in European starlings. J Neurobiol 62:72–81

    Article  PubMed  Google Scholar 

  • Suga N, Neuweiler G, Möller J (1976) Peripheral auditory tuning for fine frequency analysis by CF-FM bat, Rhinolophus ferrumequinum. 4. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125

    Article  Google Scholar 

  • Supin AY, Popov VV (1995) Temporal resolution in the dolphin’s auditory system revealed by double-click evoked potential study. J Acoust Soc Am 97:2586–2593. doi:10.1121/1.411913

    Article  PubMed  Google Scholar 

  • Swaminathan J, Mason CR, Streeter TM, Best V, Kidd G Jr, Patel AD (2015) Musical training, individual differences and the cocktail party problem. Sci Rep 5:14401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos RO, Sisneros JA, Amorim MCP, Fonseca PJ (2011) Auditory saccular sensitivity of the vocal Lusitanian toadfish: low frequency tuning allows acoustic communication throughout the year. J Comp Physiol A 197:903–913

    Article  Google Scholar 

  • Vélez A, Gall MD, Fu J, Lucas JR (2015a) Song structure, not high-frequency song content, determines high-frequency auditory sensitivity in nine species of New World sparrows (Passeriformes: Emberizidae). Funct Ecol 29:487–449

    Article  Google Scholar 

  • Vélez A, Gall MD, Lucas JR (2015b) Seasonal plasticity in auditory processing of the envelope and temporal fine structure of sounds in three songbirds. Anim Behav 103:53–63. doi:10.1016/j.anbehav.2015.01.036

    Article  Google Scholar 

  • Wiley RH (1991) Associations of song properties with habitats for territorial oscine birds of eastern North America. Am Nat 138(4):973–993

    Article  Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in atmosphere – implications for evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94

    Article  Google Scholar 

  • Wong A, Gall MD (2015) Frequency sensitivity in the auditory periphery of male and female black-capped chickadees (Poecile atricapillus). Zoology 118(5):357–363

    Article  PubMed  Google Scholar 

  • Wong RY, So P, Cummings ME (2011) How female size and male displays influence mate preference in a swordtail. Anim Behav 82:691–697

    Article  Google Scholar 

  • Woolley SMN (2012) Early experience shapes vocal neural coding and perception in songbirds. Dev Psychobiol 54(6):612–631

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolley SMN, Gill PR, Fremouw T, Theunissen FE (2009) Functional groups in the avian auditory system. J Neurosci 29:2780–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahavi A (1975) Mate selection – a selection for a handicap. J Theor Biol 53:205–214

    Article  CAS  PubMed  Google Scholar 

  • Zeng S-J, Székely T, Zhang X-W et al (2007) Comparative analyses of song complexity and song-control nuclei in fourteen oscine species. Zoolog Sci 24:1–9. doi:10.2108/zsj.24.1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our studies of the auditory system started as a result of a collaboration between JRL and Todd Freeberg, Ananthanarayan (Ravi) Krishnan, and Glenis Long, all in the lab of Ravi. Ravi was also kind enough to lend us his TDT to continue these studies. Much of this work was funded by an NSF grant (IOS-1121728) to JRL and an NSF doctoral dissertation improvement grant (IOS-1109677) to MG and an Animal Behavior Society graduate student research award to MG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Henry, K.S., Gall, M.D., Vélez, A., Lucas, J.R. (2016). Avian Auditory Processing at Four Different Scales: Variation Among Species, Seasons, Sexes, and Individuals. In: Bee, M., Miller, C. (eds) Psychological Mechanisms in Animal Communication. Animal Signals and Communication, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-48690-1_2

Download citation

Publish with us

Policies and ethics