Skip to main content

Overcoming Sensory Uncertainty: Factors Affecting Foraging Decisions in Frog-Eating Bats

  • Chapter
  • First Online:
Psychological Mechanisms in Animal Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 5))

Abstract

Predators forage in complex environments where they must make fast, high-stakes decisions. Foraging decisions are influenced by biases in sensory perception and cognitive processing, learned and remembered information , and environmental factors such as prey availability. In this chapter, we discuss some of the factors that influence decision-making in a neotropical predatory bat species, the fringe-lipped bat , Trachops cirrhosus. This bat hunts frogs and insects by eavesdropping on prey-produced sounds, but its foraging decisions are also influenced by other sources of information, including echoacoustic and gustatory cues . T. cirrhosus quickly learns novel associations between prey cue and quality, can use social information acquired from conspecifics, and forms long-term memories of prey sounds. Research on perception and cognition in this predatory bat, all conducted with wild or wild-caught and temporarily housed individuals, has made this species one of the most well-understood, non-model systems for predator decision-making. Yet there is still much that remains unknown about how and why these predators make the foraging decisions they do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akre KL, Farris HE, Lea AM, Page RA, Ryan MJ (2011) Signal perception in frogs and bats and the evolution of mating signals. Science 333:751–752

    Article  CAS  PubMed  Google Scholar 

  • Aplin LM, Farine DR, Morand-Ferron J, Cockburn A, Thornton A, Sheldon BC (2015) Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518(7540):538–541

    Article  CAS  PubMed  Google Scholar 

  • Bagrov AY, Roukoyatkina NI, Fedorova OV, Pinaev AG, Ukhanova MV (1993) Digitalis-like and vasoconstrictor effects of endogenous digoxin-like factor(s) from the venom of Bufo marinus toad. Eur J Pharmacol 234(2–3):165–172

    Article  CAS  PubMed  Google Scholar 

  • Barclay RMR, Fenton B, Tuttle MD, Ryan MJ (1981) Echolocation calls produced by Trachops cirrhosus (Chiroptera: Phyllostomatidae) while hunting for frogs. Can J Zool 59:750–753

    Article  Google Scholar 

  • Bee MA (2015) Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 95(2):216–237

    Article  PubMed  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell GP (1985) The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behav Ecol Sociobiol 16:343–347

    Article  Google Scholar 

  • Bernal XE, Page RA, Rand AS, Ryan MJ (2007) Cues for eavesdroppers: do frog calls indicate prey density and quality? Am Nat 169(3):409–415

    Article  PubMed  Google Scholar 

  • Blumstein DT, Récapet C (2009) The sound of arousal: the addition of novel non-linearities increases responsiveness in marmot alarm calls. Ethology 115(11):1074–1081. doi:10.1111/j.1439-0310.2009.01691.x

    Article  Google Scholar 

  • Bonato V, Facure KG (2000) Bat predation by the fringe-lipped bat, Trachops cirrhosus (Phyllostomidae, Chiroptera). Mammalia 64(2):241–243

    Google Scholar 

  • Bonato V, Faure KG, Uieda W (2004) Food habits of bats of subfamily Vampyrinae in Brazil. J Mammal 85(4):708–713

    Article  Google Scholar 

  • Boughman JW (1997) Greater spear-nosed bats give group-distinctive calls. Behav Ecol Sociobiol 40(1):61–70. doi:10.1007/s002650050316

    Article  Google Scholar 

  • Boul KE, Ryan MJ (2004) Population variation of complex advertisement calls in Physalaemus petersi and comparative laryngeal morphology. Copeia 3:624–631

    Article  Google Scholar 

  • Brown C, Braithwaite VA (2005) Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav Ecol 16:482–487

    Article  Google Scholar 

  • Bruns V, Burda H, Ryan MJ (1989) Ear morphology of the frog-eating bat (Trachops cirrhosus, Family: Phyllostomidae): apparent specializations for low-frequency hearing. J Morphol 199(1):103–118

    Article  Google Scholar 

  • Byrne RW, Bates LA (2007) Sociality, evolution and cognition. Curr Biol 17(16):R714–R723

    Article  CAS  PubMed  Google Scholar 

  • Campbell RA (1963) Detection of a noise signal of varying duration. J Acoust Soc Am 35:1732–1737

    Article  Google Scholar 

  • Chen KK, Kovarikova A (1967) Pharmacology and toxicology of toad venom. J Pharm Sci 56(12):1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Cherry E (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  • Clarin T, Ruczynski I, Page RA, Siemers BM (2013) Foraging ecology predicts learning performance in insectivorous bats. PloS ONE 8:e64823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarin TMA, Borissov I, Page RA, Ratcliffe JM, Siemers BM (2014) Social learning within and across species: information transfer in mouse-eared bats. Canad J Zool 92:129–139. doi:10.1139/cjz-2013-0211

    Article  Google Scholar 

  • Cramer MJ, Willig MR, Jones C (2001) Trachops cirrhosus. Mamm Species Am Soc Mammal 656:1–6

    Article  Google Scholar 

  • Cvikel N, Egert Berg K, Levin E, Hurme E, Borissov I, Boonman A, Amichai E, Yovel Y (2015) Bats aggregate to improve prey search but might be impaired when their density becomes too high. Curr Biol 25(2):206–211. doi:10.1016/j.cub.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  • Dixon MM, Jones PL, Meneses S, Page RA (in preparation) Long-term memory for a novel task in wild frog-eating bats

    Google Scholar 

  • Emlen JM (1966) The role of time and energy in food preference. Am Nat 100(916):611–617. doi:10.2307/2459299

    Article  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420

    Article  CAS  PubMed  Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169

    Article  PubMed  Google Scholar 

  • Falk JJ, Hofstede HM, Jones PL, Dixon MM, Faure PA, Kalko EKV, Page RA (2015) Sensory-based niche partitioning in a multiple predator–multiple prey community. Proc R Soc B Biol Sci 282:20150520

    Article  Google Scholar 

  • Farris HF, Rand AS, Ryan MJ (2002) The effects of spatially separated call components on phonotaxis in túngara frogs: evidence for auditory grouping. Brain Behav Evol 60:181–188

    Article  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2005) The effects of time, space and spectrum on auditory grouping in túngara frogs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12):1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Frame AM, Servedio MR (2012) The evolution of preference strength under sensory bias: a role for indirect selection? Ecol Evol 2(7):1572–1583

    Article  PubMed  PubMed Central  Google Scholar 

  • Fugère V, O’Mara MT, Page RA (2015) Perceptual bias does not explain preference for prey call adornment in the frog-eating bat. Behav Ecol Sociobiol:1–12. doi:10.1007/s00265-015-1949-2

    Google Scholar 

  • Galef BG Jr, Giraldeau L-A (2001) Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Anim Behav 61(1):3–15

    Article  PubMed  Google Scholar 

  • Galef BG, Dudley KE, Whisken EE (2008) Social learning of food preferences in ‘dissatisfied’ and ‘uncertain’ Norway rats. Anim Behav 75:631e637

    Google Scholar 

  • Gardner AL (1977) Feeding habits. In: Baker RJ, Jones JK, Carter DC (eds) Biology of bats of the New World family Phyllostomatidae, vol Part II. Texas Tech Press, Lubbock, pp. 293–350

    Google Scholar 

  • Giannini NP, Kalko EKV (2005) The guild structure of animalivorous leaf-nosed bats of Barro Colorado Island, Panama, revisited. Acta Chiropterologica 7(1):131–146. doi:10.3161/1733-5329(2005)7[131:TGSOAL]2.0.CO;2

    Article  Google Scholar 

  • Giraldeau LA, Valone TJ, Templeton JJ (2002) Potential disadvantages of using socially acquired information. Philos Trans R Soc Lond B Biol Sci 357:1559–1566. doi:10.1098/rstb.2002.1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Goerlitz HR, Siemers BM (2007) Sensory ecology of prey rustling sounds: acoustical features and their classification by wild grey mouse lemurs. Funct Ecol 21:143–153

    Article  Google Scholar 

  • Gomes DGE, Page RA, Geipel I, Taylor RC, Ryan MJ, Halfwerk W (2016) Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353(6305):1277–1280. doi:10.1126/science.aaf7934

    Article  CAS  PubMed  Google Scholar 

  • Gridi-Papp M, Rand AS, Ryan MJ (2006) Animal communication: complex call production in the túngara frog. Nature 441:38

    Article  CAS  PubMed  Google Scholar 

  • Halfwerk W, Dixon MM, Ottens KJ, Taylor RC, Ryan MJ, Page RA, Jones PL (2014a) Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. J Exp Biol 217(17):3038–3044. doi:10.1242/jeb.107482

    Article  PubMed  Google Scholar 

  • Halfwerk W, Jones P, Taylor R, Ryan M, Page R (2014b) Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science 343(6169):413–416

    Article  CAS  PubMed  Google Scholar 

  • Handley CO Jr (1976) Mammals of the Smithsonian Venezuelan project. Brigham Young Univ Sci Bull Biol Ser 20:1–89

    Article  Google Scholar 

  • Håstad O, Victorsson J, Ödeen A (2005) Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc Natl Acad Sci U S A 102(18):6391–6394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hödl W, Amézquita A (2001) Visual signaling in anuran amphibians. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, DC, pp. 121–141

    Google Scholar 

  • Hristov N, Conner WE (2005) Effectiveness of tiger moth (Lepidoptera, Arctiidae) chemical defenses against an insectivorous bat (Eptesicus fuscus). Chemoecology 15(2):105–113

    Article  Google Scholar 

  • Hunt GR, Gray RD (2004) The crafting of hook tools by wild New Caledonian crows. Proc R Soc Lond B Biol Sci 271(Suppl 3):S88–S90. doi:10.1098/rsbl.2003.0085

    Article  Google Scholar 

  • Ibáñez R, Rand AS, Jaramillo C (1999) The Amphibians of Barro Colorado Nature Monument, Soberania National Park and Adjacent Areas. Mizrachi & Pujol, S.A., Panama

    Google Scholar 

  • Jones JK Jr (1966) Bats from Guatemala, vol. 16. University of Kansas Publications, Museum of Natural History, pp 439–472

    Google Scholar 

  • Jones P, Page R, Hartbauer M, Siemers B (2011) Behavioral evidence for eavesdropping on prey song in two Palearctic sibling bat species. Behav Ecol Sociobiol 65(2):333–340. doi:10.1007/s00265-010-1050-9

    Article  Google Scholar 

  • Jones PL, Farris HE, Ryan MJ, Page RA (2013a) Do frog-eating bats perceptually bind the complex components of frog calls? J Comp Physiol A 199(4):279–283

    Article  Google Scholar 

  • Jones PL, Ryan MJ, Flores V, Page RA (2013b) When to approach novel prey cues? Social learning strategies in frog-eating bats. Proc R Soc B Biol Sci 280(1772):20132330

    Article  Google Scholar 

  • Jones PL, Ryan MJ, Page RA (2014) Population and seasonal variation in response to prey calls by an eavesdropping bat. Behav Ecol Sociobiol 68(4):605–615

    Article  Google Scholar 

  • Jones PL, Ryan MJ, Chittka L (2015) The influence of past experience with flower reward quality on social learning in bumblebees. Anim Behav 101:11–18. doi:10.1016/j.anbehav.2014.12.016

    Article  Google Scholar 

  • Jones PL, Hämsch F, Kalko EKV, Page RA, O’Mara MT (in review) Foraging and roosting behavior of the fringe-lipped bat, Trachops cirrhosus, on Barro Colorado Island, Panama. J Mammal

    Google Scholar 

  • Kalko EKV, Handley CO, Handley D (1996) Organization, diversity, and long-term dynamics of a Neotropical bat community. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic Press, San Diego, pp. 503–553

    Chapter  Google Scholar 

  • Kalko EKV, Friemel D, Handley CO, Schnitzler H-U (1999) Roosting and foraging behavior of two Neotropical gleaning bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae). Biotropica 31(2):344–353

    Article  Google Scholar 

  • Korine C, Kalko EKV (2005) Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): echolocation call design and olfaction. Behav Ecol Sociobiol 58(5):1–12

    Article  Google Scholar 

  • Laland KN (2004) Social learning strategies. Learn Behav 32(1):4–14

    Article  PubMed  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • Marler PR (1955) Characteristics of some animal calls. Nature 176:6–8

    Article  Google Scholar 

  • Mettke-Hofmann C (2014) Cognitive ecology: ecological factors, life-styles, and cognition. Wiley Interdiscip Rev Cogn Sci 5(3):345–360

    Article  PubMed  Google Scholar 

  • Mikich SB, Bianconi GV, Maia BHLNS, Teixeira SD (2003) Attraction of the fruit-eating bat Carollia perspicillata to Piper gaudichaudianum essential oil. J Chem Ecol 29(10):2379–2383

    Article  CAS  PubMed  Google Scholar 

  • Miller GS Jr (1907) The families and genera of bats. Bull US Natl Mus 57:1–282

    Google Scholar 

  • Morand-Ferron J, Quinn JL (2015) The evolution of cognition in natural populations. Trends Cogn Sci 19(5):235–237

    Article  PubMed  Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4:160–166. doi:10.1016/0169-5347(89)90120-1

    Article  CAS  PubMed  Google Scholar 

  • O’Mara MT, Dechmann DKN, Page RA (2014) Frugivorous bats evaluate the quality of social information when choosing novel foods. Behav Ecol. doi:10.1093/beheco/aru120

    Google Scholar 

  • Page RA, Ryan MJ (2005) Flexibility in assessment of prey cues: frog-eating bats and frog calls. Proc R Soc B Biol Sci 272:841–847

    Article  Google Scholar 

  • Page RA, Ryan MJ (2006) Social transmission of novel foraging behavior in bats: frog calls and their referents. Curr Biol 16:1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Page RA, Ryan MJ (2008) The effect of signal complexity on localization performance in bats that localize frog calls. Anim Behav 76(Part 3):761–769

    Article  Google Scholar 

  • Page RA, Schnelle T, Kalko EKV, Bunge T, Bernal XE (2012) Reassessment of prey through sequential use of multiple sensory cues by an eavesdropping bat. Naturwissenschaften 99:505–509

    Article  CAS  PubMed  Google Scholar 

  • Page RA, Ryan MJ, Bernal XE (2014) Be loved, be prey, be eaten. In: Yasukawa K (ed) Animal behavior, Case studies: integration and application of animal behavior, vol 3. Praeger, New York, NY, pp. 123–154

    Google Scholar 

  • Page RA, Ryan MJ, Kalko EKV, Knörnschild M (in preparation) Sensory mode switching: plasticity in prey detection in the frog-eating bat, Trachops cirrhosus

    Google Scholar 

  • Phillips CJ, Tandler B, Pinkstaff CA (1987) Unique salivary glands in two genera of tropical microchiropteran bats an example of evolutionary convergence in histology and histochemistry. J Mammal 68(2):235–242

    Article  Google Scholar 

  • Pine RH, Anderson JE (1979) Notes on stomach contents in Trachops cirrhosus. Mammalia 43(4):568–570

    Article  Google Scholar 

  • Pravosudov VV, Clayton NS (2002) A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees, Poecile atricapilla. Behav Neurosci 116(4):515–522

    Article  PubMed  Google Scholar 

  • Ramakers JJC, Dechmann DKN, Page RA, O’Mara MT (2016) Frugivorous bats prefer information from novel social partners. Anim Behav 116:83–87

    Google Scholar 

  • Rand AS, Ryan MJ (1981) The adaptive significance of a complex vocal repertoire in a Neotropical frog. Zeitschrift fur Tierpsychologie 57(209):214

    Google Scholar 

  • Ratcliffe JM, ter Hofstede HM (2005) Roosts as information centres: social learning of food preferences in bats. Biol Lett 1:72–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhebergen F, Page RA, Ryan MJ, Taylor R, Halfwerk W (2015) Multimodal cues improve prey localisation under complex environmental conditions. Proc R Soc B Biol Sci 282:20151403

    Article  Google Scholar 

  • Ripperger S, Josic D, Hierold M, Koelpin A, Weigel R, Hartmann M, Page RA, Mayer F (2016) Automated proximity sensing in small vertebrates: design of miniaturized sensor nodes and first field tests in bats. Ecol Evol. doi:10.1002/ece3.2040

    PubMed  PubMed Central  Google Scholar 

  • Roberts JA, Taylor PW, Uetz GW (2007) Consequences of complex signaling: predator detection of multimodal cues. Behav Ecol 18(1):236–240

    Article  Google Scholar 

  • Rodrigues FHG, Reis ML, Braz VS (2004) Food habits of the frog-eating bat, Trachops cirrhosus, in Atlantic forest of northeastern Brazil. Chiroptera Neotropical 10:180–182

    Google Scholar 

  • Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58(5):921–931

    Article  CAS  PubMed  Google Scholar 

  • Russo D, Jones G, Arlettaz R (2007) Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. J Exp Biol 210:166–176

    Article  PubMed  Google Scholar 

  • Ryan MJ, Cummings ME (2013) Perceptual biases and mate choice. Annu Rev Ecol Evol Syst 44:437–459

    Article  Google Scholar 

  • Ryan MJ, Tuttle MD (1983) The ability of the frog-eating bat to discriminate among novel and potentially poisonous frog species using acoustic cues. Anim Behav 31(3):827–833

    Article  Google Scholar 

  • Ryan MJ, Tuttle MD, Rand AS (1982) Bat predation and sexual advertisement in a Neotropical anuran. Am Nat 119(1):136–139

    Article  Google Scholar 

  • Ryan MJ, Tuttle MD, Barclay RMR (1983) Behavioral responses of the frog-eating bat, Trachops cirrhosus, to sonic frequencies. J Comp Physiol A Sens Neural Behav Physiol 150(4):413–418

    Article  Google Scholar 

  • Ryan MJ, Leslie C, Ryan ES (2015) Physalaemus pustulosus (túngara frog) sexual communication. Herpetol Rev 46(3):415–416

    Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–559

    Article  Google Scholar 

  • Schnitzler H-U, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18(8):386–394

    Article  Google Scholar 

  • Siemers BM, Schnitzler H-U (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  CAS  PubMed  Google Scholar 

  • Stuart-Fox D, Moussalli A, Whiting MJ (2008) Predator-specific camouflage in chameleons. Biol Lett 4(4):326–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Surlykke A, Jakobsen L, Kalko EKV, Page RA (2013) Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae). Front Physiol 4:143. doi:10.3389/fphys.2013.00143

    Article  PubMed  PubMed Central  Google Scholar 

  • Tandler B, Phillips CJ, Nagato T (1996) Histological convergent evolution of the accessory submandibular glands in four species of frog-eating bats. Eur J Morphol 34(3):163–168

    Article  CAS  PubMed  Google Scholar 

  • Taylor R, Ryan M (2013) Interactions of multisensory components perceptually rescue túngara frog mating signals. Science 341(6143):273–274

    Article  CAS  PubMed  Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2008) Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Anim Behav 76(Part 3):1089–1097

    Article  Google Scholar 

  • Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A Physiol 111(1):1–29

    Article  Google Scholar 

  • Trillo PA, Athanas KA, Goldhill DH, Hoke KL, Funk WC (2013) The influence of geographic heterogeneity in predation pressure on sexual signal divergence in an Amazonian frog species complex. J Evol Biol 26:216–222

    Article  CAS  PubMed  Google Scholar 

  • Tuttle MD (2015) The secret lives of bats. Houghton Mifflin Harcourt, Boston, MA

    Google Scholar 

  • Tuttle MD, Ryan MJ (1981) Bat predation and the evolution of frog vocalizations in the Neotropics. Science 214(4521):677–678

    Article  CAS  PubMed  Google Scholar 

  • Tuttle MD, Taft LK, Ryan MJ (1982) Evasive behavior of a frog in response to bat predation. Anim Behav 30(2):393–397

    Article  Google Scholar 

  • Tuttle MD, Ryan MJ, Belwood JJ (1985) Acoustical resource partitioning by two species of Phyllostomid bats (Trachops cirrhosus and Tonatia sylvicola). Anim Behav 33(4):1369–1371

    Article  Google Scholar 

  • von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • Ward AJW, Mehner T (2010) Multimodal mixed messages: the use of multiple cues allows greater accuracy in social recognition and predator detection decisions in the mosquitofish, Gambusia holbrooki. Behav Ecol 21(6):1315–1320. doi:10.1093/beheco/arq152

    Article  Google Scholar 

  • Wright GS, Wilkinson GS, Moss CF (2011) Social learning of a novel foraging task by big brown bats, Eptesicus fuscus. Anim Behav 82(5):1075–1083. doi:10.1016/j.anbehav.2011.07.044

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mike Ryan, Merlin Tuttle, Ryan Taylor, Laurel Symes, Cory Miller, and Mark Bee for their helpful feedback on this chapter. We are also deeply indebted to the Smithsonian Tropical Research Institute (STRI). The body of work that has emerged over the past four decades on the sensory and cognitive ecology of the frog-eating bat would not have been possible without STRI’s ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Page, R.A., Jones, P.L. (2016). Overcoming Sensory Uncertainty: Factors Affecting Foraging Decisions in Frog-Eating Bats. In: Bee, M., Miller, C. (eds) Psychological Mechanisms in Animal Communication. Animal Signals and Communication, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-48690-1_11

Download citation

Publish with us

Policies and ethics