Skip to main content

Implications of Chromosomal Mutations for Mycobacterial Drug Resistance

  • Chapter
  • First Online:

Abstract

Tuberculosis (TB) remains a global health concern, despite availability of antituberculosis drugs. Drug-resistant Mycobacterium tuberculosis strains were identified shortly after the discovery and introduction of streptomycin for the treatment of this disease. Subsequently, multidrug therapy was implemented for TB treatment; however, this was soon followed by reports of multi-, extensively, and totally drug-resistant tuberculosis cases globally. The amplification of this drug resistance is due to the sequential accumulation of chromosomal alterations in target genes in the Mycobacterium tuberculosis genome. It is also evident that the presence of mutations that confer drug resistance results in the emergence of compensatory mechanisms which restore bacterial fitness. The recent approval by the Food and Drug Administration for bedaquiline as an antituberculosis drug provided some hope. However, clinical resistance to this new drug has already been reported. This underscores that it is imperative to understand drug resistance and its associated mechanisms in order to direct research efforts to the development of antituberculosis regimens with novel mechanisms of actions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53. doi:10.1016/j.cell.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams KN, Szumowski JD, Ramakrishnan L (2014) Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 210:456–466. doi:10.1093/infdis/jiu095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alangaden GJ, Manavathu EK, Vakulenko SB, Zvonok NM, Lerner SA (1995) Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob Agents Chemother 39:1700–1703. doi:10.1128/AAC.39.8.1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, Nair M, Pain A, Clark TG, Hasan R (2015) Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 10, e0117771. doi:10.1371/journal.pone.0117771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227. doi:10.1126/science.1106753

    Article  CAS  PubMed  Google Scholar 

  • Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC, Koul A (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9, e102135. doi:10.1371/journal.pone.0102135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashenafi M, Ammosova T, Nekhai S, Byrnes WM (2014) Purification and characterization of aminoglycoside phosphotransferase APH(6)-Id, a streptomycin-inactivating enzyme. Mol Cell Biochem 387:207–216. doi:10.1007/s11010-013-1886-1

    Article  CAS  PubMed  Google Scholar 

  • Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Jarlier V, Fisher LM (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50:104–112. doi:10.1128/AAC.50.1.104-112.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avalos E, Catanzaro D, Catanzaro A, Ganiats T, Brodine S, Alcaraz J, Rodwell T (2015) Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One 10, e0120470. doi:10.1371/journal.pone.0120470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U (2012) Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 56:2643–2651. doi:10.1128/AAC.06003-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230. doi:10.1126/science.8284673

    Article  CAS  PubMed  Google Scholar 

  • Barry PJ, O’Connor TM (2007) Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem 14:2000–2008. doi:10.2174/092986707781368496

    Article  CAS  PubMed  Google Scholar 

  • Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, Locht C, Besra GS (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331

    CAS  PubMed  Google Scholar 

  • Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, Junop M, Wright GD (2008) Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of Arr. Proc Natl Acad Sci U S A 105:4886–4891. doi:10.1073/pnas.0711939105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckert P, Hillemann D, Kohl TA, Kalinowski J, Richter E, Niemann S, Feuerriegel S (2012) rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 56:2743–2745. doi:10.1128/AAC.06227-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger AE, Besra GS, Ford ME, Mikusova K, Belisle JT, Brennan PJ, Inamine JM (1996) The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93:11919–11924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billington OJ, McHugh TD, Gillespie SH (1999) Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43:1866–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkman J, Nagaev I, Berg OG, Hughes D, Andersson DI (2000) Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287:1479–1482. doi:10.1126/science.287.5457.1479

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Keller PM, Stuckia D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Homke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Bottger EC (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373:1986–1988. doi:10.1056/NEJMc1505196

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodmer T, Zurcher G, Imboden P, Telenti A (1995) Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 35:345–348. doi:10.1093/jac/35.2.345

    Article  CAS  PubMed  Google Scholar 

  • Boonaiam S, Chaiprasert A, Prammananan T, Leechawengwongs M (2010) Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin Microbiol Infect 16:396–399. doi:10.1111/j.1469-0691.2009.02838.x

    Article  CAS  PubMed  Google Scholar 

  • Borges-Walmsley MI, McKeegan KS, Walmsley AR (2003) Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376:313–338. doi:10.1042/bj20020957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottger EC, Springer B (2008) Tuberculosis: drug resistance, fitness, and strategies for global control. Eur J Pediatr 167:141–148

    Article  PubMed  Google Scholar 

  • Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83:91–97

    Article  CAS  Google Scholar 

  • Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W (2011) Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:355–360. doi:10.1128/AAC.01030-10

    Article  CAS  PubMed  Google Scholar 

  • Buroni S, Manina G, Guglierame P, Pasca MR, Riccardi G, De Rossi E (2006) LfrR is a repressor that regulates expression of the efflux pump LfrA in Mycobacterium smegmatis. Antimicrob Agents Chemother 50:4044–4052. doi:10.1128/AAC.00656-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG (1997) Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J Bacteriol 179:5046–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell PJ, Morlock GP, Sikes RD, Dalton TL, Metchock B, Starks AM, Hooks DP, Cowan LS, Plikaytis BB, Posey JE (2011) Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:2032–2041. doi:10.1128/AAC.01550-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacon O, Feng Z, Harris NB, Caceres NE, Adams LG, Barletta RG (2002) Mycobacterium smegmatis D-Alanine Racemase mutants are not dependent on D-Alanine for growth. Antimicrob Agents Chemother 46:47–54. doi:10.1128/AAC.46.2.47-54.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Gruber T, Barry CE III, Boshoff HI, Rhee KY (2013) Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339:88–91. doi:10.1126/science.1228980

    Article  CAS  PubMed  Google Scholar 

  • Chen JM, Uplekar S, Gordon SV, Cole ST (2012) A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One 7, e43467. doi:10.1371/journal.pone.0043467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang YM, Bandyopadhyay N, Rifat D, Rubin H, Bader JS, Karakousis PC (2015) Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. mBio 6, e02428. doi:10.1128/mBio.02428-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, Walker BJ, Bantubani N, Almeida DV, Alvarado L, Chapman SB, Mvelase NR, Duffy EY, Fitzgerald MG, Govender P, Gujja S, Hamilton S, Howarth C, Larimer JD, Maharaj K, Pearson MD, Priest ME, Zeng Q, Padayatchi N, Grosset J, Young SK, Wortman J, Mlisana KP, O’Donnell MR, Birren BW, Bishai WR, Pym AS, Earl AM (2015) Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 12, e1001880. doi:10.1371/journal.pmed.1001880

    Article  PubMed  PubMed Central  Google Scholar 

  • Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106–110. doi:10.1038/ng.1038

    Article  CAS  Google Scholar 

  • Cui Z, Li Y, Cheng S, Yang H, Lu J, Hu Z, Ge B (2014) Mutations in the embC-embA intergenic region contribute to Mycobacterium tuberculosis resistance to ethambutol. Antimicrob Agents Chemother 58:6837–6843. doi:10.1128/AAC.03285-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dabbs ER, Yazawa K, Mikami Y, Miyaji M, Morisaki N, Iwasaki S, Furihata K (1995) Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother 39:1007–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies J, Courvalin P (1977) Mechanisms of resistance to aminoglycosides. Am J Med 62:868–872

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240. doi:10.1016/S0966-842X(97)01033-0

    Article  CAS  PubMed  Google Scholar 

  • de Knegt GJ, Ten Kate MT, van Soolingen D, Aarnoutse R, Boeree MJ, Bakker-Woudenberg IA, de Steenwinkel JE (2014) Enhancement of in vitro activity of tuberculosis drugs by addition of thioridazine is not reflected by improved in vivo therapeutic efficacy. Tuberculosis (Edinb). doi:10.1016/j.tube.2014.09.002

  • de Knegt GJ, Bakker-Woudenberg IA, van Soolingen D, Aarnoutse R, Boeree MJ, de Steenwinkel JE (2015) SILA-421 activity in vitro against rifampicin-susceptible and rifampicin-resistant Mycobacterium tuberculosis, and in vivo in a murine tuberculosis model. Int J Antimicrob Agents 46:66–72. doi:10.1016/j.ijantimicag.2015.02.025

    Article  PubMed  CAS  Google Scholar 

  • de Vos M, Muller B, Borrell S, Black P, van Helden P, Warren R, Gagneux S, Victor T (2012) Putative compensatory mutations in the rpoC gene of rifampicin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57:827–832. doi:10.1128/AAC.01541-12

    Article  PubMed  CAS  Google Scholar 

  • DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE III (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 97:9677–9682. doi:10.1073/pnas.97.17.9677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • deJonge MR, Koymans LH, Guillemont JE, Koul A, Andries K (2007) A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins 67:971–980. doi:10.1002/prot.21376

    Article  CAS  Google Scholar 

  • Diacon AH, Dawson R, Hanekom M, Narunsky K, Venter A, Hittel N, Geiter LJ, Wells CD, Paccaly AJ, Donald PR (2011) Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis 15:949–954. doi:10.5588/ijtld.10.0616

    Article  CAS  PubMed  Google Scholar 

  • Dillon NA, Peterson ND, Rosen BC, Baughn AD (2014) Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob Agents Chemother 58:7258–7263. doi:10.1128/AAC.04028-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Draker KA, Boehr DD, Elowe NH, Noga TJ, Wright GD (2003) Functional annotation of putative aminoglycoside antibiotic modifying proteins in Mycobacterium tuberculosis H37Rv. J Antibiot (Tokyo) 56:135–142

    Article  CAS  Google Scholar 

  • Fajardo A, Martinez-Martin N, Mercadillo M, Galan JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tummler B, Baquero F, Martinez JL (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3, e1619. doi:10.1371/journal.pone.0001619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feuerriegel S, Koser CU, Richter E, Niemann S (2013) Mycobacterium canettii is intrinsically resistant to both pyrazinamide and pyrazinoic acid. J Antimicrob Chemother 68:1439–1440. doi:10.1093/jac/dkt042

    Article  CAS  PubMed  Google Scholar 

  • Fivian-Hughes AS, Houghton J, Davis EO (2012) Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology 158:308–318. doi:10.1099/mic.0.053983-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich SO, Rachow A, Saathoff E, Singh K, Mangu CD, Dawson R, Phillips PP, Venter A, Bateson A, Boehme CC, Heinrich N, Hunt RD, Boeree MJ, Zumla A, McHugh TD, Gillespie SH, Diacon AH, Hoelscher M, Pan African Consortium for the Evaluation of Anti-tuberculosis A (2013) Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med 1:462–470. doi:10.1016/S2213-2600(13)70119-X

    Article  CAS  PubMed  Google Scholar 

  • Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312:1944–1946. doi:10.1126/science.1124410

    Article  CAS  PubMed  Google Scholar 

  • Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland G (2006) Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368:1575–1580. doi:10.1016/S0140-6736(06)69573-1

    Article  PubMed  Google Scholar 

  • Garima K, Pathak R, Tandon R, Rathor N, Sinha R, Bose M, Varma-Basil M (2015) Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis (Edinb) 95:155–161. doi:10.1016/j.tube.2015.01.005

    Article  CAS  Google Scholar 

  • Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC (2012) Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7, e33275. doi:10.1371/journal.pone.0033275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsburg AS, Grosset JH, Bishai WR (2003) Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 3:432–442. doi:10.1016/S1473-3099(03)00671-6

    Article  CAS  PubMed  Google Scholar 

  • Grzegorzewicz AE, Pham H, Gundi VA, Scherman MS, North EJ, Hess T, Jones V, Gruppo V, Born SE, Kordulakova J, Chavadi SS, Morisseau C, Lenaerts AJ, Lee RE, McNeil MR, Jackson M (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8:334–341. doi:10.1038/nchembio.794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Espinal M, Stop TBWGoD-PfMDRTB (2003) A prioritised research agenda for DOTS-Plus for multidrug-resistant tuberculosis (MDR-TB). Int J Tuberc Lung Dis 7:410–414

    PubMed  Google Scholar 

  • Gupta AK, Chauhan DS, Srivastava K, Das R, Batra S, Mittal M, Goswami P, Singhal N, Sharma VD, Venkatesan K, Hasnain SE, Katoch VM (2006) Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis 38:246–254

    PubMed  Google Scholar 

  • Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR (2014) Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:574–576. doi:10.1128/AAC.01462-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurumurthy M, Rao M, Mukherjee T, Rao SP, Boshoff HI, Dick T, Barry CE III, Manjunatha UH (2013) A novel F(420)-dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol 87:744–755. doi:10.1111/mmi.12127

    Article  CAS  PubMed  Google Scholar 

  • Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2979–2981. doi:10.1128/AAC.00037-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haver HL, Chua A, Ghode P, Lakshminarayana SB, Singhal A, Mathema B, Wintjens R, Bifani P (2015) Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:5316–5323. doi:10.1128/AAC.00308-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Wang X, Cui P, Jin J, Chen J, Zhang W, Zhang Y (2015) ubiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 95:149–154. doi:10.1016/j.tube.2014.12.002

    Article  CAS  Google Scholar 

  • Heep M, Brandstatter B, Rieger U, Lehn N, Richter E, Rusch-Gerdes S, Niemann S (2001) Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 39:107–110. doi:10.1128/JCM.39.1.107-110.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heym B, Saint-Joanis B, Cole ST (1999) The molecular basis of isoniazid resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 79:267–271

    Article  CAS  Google Scholar 

  • Hillemann D, Rusch-Gerdes S, Richter E (2008) In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 52:800–801. doi:10.1128/AAC.01189-07

    Article  CAS  PubMed  Google Scholar 

  • Hoffner S, Angeby K, Sturegard E, Jonsson B, Johansson A, Sellin M, Werngren J (2013) Proficiency of drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide: the Swedish experience. Int J Tuberc Lung Dis 17:1486–1490. doi:10.5588/ijtld.13.0195

    Article  CAS  PubMed  Google Scholar 

  • Holtz TH (2007) XDR-TB in South Africa: revised definition. PLoS Med 4, e161. doi:10.1371/journal.pmed.0040161

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtz TH, Cegielski JP (2007) Origin of the term XDR-TB. Eur Respir J 30:396. doi:10.1183/09031936.00042607

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Scherman MS, D’Haeze W, Vereecke D, Holsters M, Crick DC, McNeil MR (2005) Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate:decaprenyl-phosphate5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem 280:24539–24543. doi:10.1074/jbc.M504068200

    Article  CAS  PubMed  Google Scholar 

  • Huitric E, Verhasselt P, Andries K, Hoffner SE (2007) In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51:4202–4204. doi:10.1128/AAC.00181-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI (2010) Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54:1022–1028. doi:10.1128/AAC.01611-09

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Andries K, Lounis N, Chauffour A, Truffot-Pernot C, Jarlier V, Veziris N (2007) Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob Agents Chemother 51:1011–1015. doi:10.1128/AAC.00898-06

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Watanabe K, Mikami Y, Yazawa K, Ando A, Nagata Y, Morisaki N, Hashimoto Y, Furihata K, Dabbs ER (1999) Identification and characterization of a new intermediate in the ribosylative inactivation pathway of rifampin by Mycobacterium smegmatis. Microb Drug Resist 5:259–264. doi:10.1089/mdr.1999.5.259

    Article  CAS  PubMed  Google Scholar 

  • Isaeva Y, Bukatina A, Krylova L, Nosova E, Makarova M, Moroz A (2013) Determination of critical concentrations of moxifloxacin and gatifloxacin for drug susceptibility testing of Mycobacterium tuberculosis in the BACTEC MGIT 960 system. J Antimicrob Chemother 68:2274–2281. doi:10.1093/jac/dkt202

    CAS  PubMed  Google Scholar 

  • Jia L, Tomaszewski JE, Hanrahan C, Coward L, Noker P, Gorman G, Nikonenko B, Protopopova M (2005) Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 144:80–87. doi:10.1038/sj.bjp.0705984

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Jordaan AM, Pretorius L, Engelke E, van der Spuy G, Kewley C, Bosman M, van Helden PD, Warren R, Victor TC (2006a) Ethambutol resistance testing by mutation detection. Int J Tuberc Lung Dis 10:68–73

    CAS  PubMed  Google Scholar 

  • Johnson R, Streicher EM, Louw GE, Warren RM, van Helden PD, Victor TC (2006b) Drug resistance in Mycobacterium tuberculosis. Curr Issues Mol Biol 8:97–111

    CAS  PubMed  Google Scholar 

  • Kambli P, Ajbani K, Sadani M, Nikam C, Shetty A, Udwadia Z, Rodwell TC, Catanzaro A, Rodrigues C (2015) Correlating Minimum Inhibitory Concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis (Edinb) 95:137–141. doi:10.1016/j.tube.2014

    Article  CAS  Google Scholar 

  • Keshavjee S, Farmer PE (2012) Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med 367:931–936. doi:10.1056/NEJMra1205429

    Article  CAS  PubMed  Google Scholar 

  • Klopper M, Warren RM, Hayes C, Gey van Pittius NC, Streicher EM, Muller B, Sirgel FA, Chabula-Nxiweni M, Hoosain E, Coetzee G, David van Helden P, Victor TC, Trollip AP (2013) Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 19:449–455. doi:10.3201/EID1903.120246

    Article  PubMed  PubMed Central  Google Scholar 

  • Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95:461–469

    CAS  PubMed  Google Scholar 

  • Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I, Guillemont J, Bald D, Andries K (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324. doi:10.1038/nchembio884

    Article  CAS  PubMed  Google Scholar 

  • Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, Barry CE III (2003) Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J Comb Chem 5:172–187. doi:10.1021/cc020071p

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. doi:10.1128/AAC.48.7.2415-2423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Schurig-Briccio LA, Feng X, Upadhyay A, Pujari V, Lechartier B, Fontes FL, Yang H, Rao G, Zhu W, Gulati A, No JH, Cintra G, Bogue S, Liu YL, Molohon K, Orlean P, Mitchell DA, Freitas-Junior L, Ren F, Sun H, Jiang T, Li Y, Guo RT, Cole ST, Gennis RB, Crick DC, Oldfield E (2014a) Multitarget drug discovery for tuberculosis and other infectious diseases. J Med Chem 57:3126–3139. doi:10.1021/jm500131s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Upadhyay A, Fontes FL, North EJ, Wang Y, Crans DC, Grzegorzewicz AE, Jones V, Franzblau SG, Lee RE, Crick DC, Jackson M (2014b) Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:6413–6423. doi:10.1128/AAC.03229-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J, Wan K (2015) Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One 10, e0119013. doi:10.1371/journal.pone.0119013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Takiff HE, Nikaido H (1996) Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriol 178:3791–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V (2006) Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob Agents Chemother 50:3543–3547. doi:10.1128/AAC.00766-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louw GE, Warren RM, Donald PR, Murray MB, Bosman M, Van Helden PD, Young DB, Victor TC (2006) Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int J Tuberc Lung Dis 10:802–807

    CAS  PubMed  Google Scholar 

  • Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53:3181–3189. doi:10.1128/AAC.01577-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louw GE, Warren RM, Gey van Pittius NC, Leon R, Jimenez A, Hernandez-Pando R, McEvoy CR, Grobbelaar M, Murray M, van Helden PD, Victor TC (2011) Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184:269–276. doi:10.1164/rccm.201011-1924OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zheng M, Wang B, Fu L, Zhao W, Li P, Xu J, Zhu H, Jin H, Yin D, Huang H, Upton AM, Ma Z (2011) Clofazimine analogs with efficacy against experimental tuberculosis and reduced potential for accumulation. Antimicrob Agents Chemother 55:5185–5193. doi:10.1128/AAC.00699-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarov V, Neres J, Hartkoorn RC, Ryabova OB, Kazakova E, Sarkan M, Huszar S, Piton J, Kolly GS, Vocat A, Conroy TM, Mikusova K, Cole ST (2015) The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:4446–4452. doi:10.1128/AAC.00778-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, Daniels L, Dick T, Pang SS, Barry CE III (2006) Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103:431–436. doi:10.1073/pnas.0508392103

    Article  CAS  PubMed  Google Scholar 

  • Manjunatha U, Boshoff HI, Barry CE (2009) The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2:215–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariam DH, Mengistu Y, Hoffner SE, Andersson DI (2004) Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:1289–1294. doi:10.1128/AAC.48.4.1289-1294.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrakchi H, Laneelle G, Quemard A (2000) InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146:289–296. doi:10.1099/00221287-146-2-289

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Viveiros M, Ramos J, Couto I, Molnar J, Boeree M, Amaral L (2009) SILA 421, an inhibitor of efflux pumps of cancer cells, enhances the killing of intracellular extensively drug-resistant tuberculosis (XDR-TB). Int J Antimicrob Agents 33:479–482. doi:10.1016/j.ijantimicag.2008.10.028

    Article  CAS  PubMed  Google Scholar 

  • Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, Cambau E, Aubry A (2012) A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67:819–831. doi:10.1093/jac/dkr566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masjedi MR, Tabarsi P, Baghaei P, Jalali S, Farnia P, Chitsaz E, Amiri M, Mansouri D, Velayati AA (2010) Extensively drug-resistant tuberculosis treatment outcome in Iran: a case series of seven patients. Int J Infect Dis 14:e399–e402. doi:10.1371/journal.pmed.0030466

    Article  PubMed  Google Scholar 

  • Maurer FP, Bruderer VL, Ritter C, Castelberg C, Bloemberg GV, Bottger EC (2014) Lack of antimicrobial bactericidal activity in Mycobacterium abscessus. Antimicrob Agents Chemother 58:3828–3836. doi:10.1128/AAC.02448-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurer FP, Bruderer VL, Castelberg C, Ritter C, Scherbakov D, Bloemberg GV, Bottger EC (2015) Aminoglycoside-modifying enzymes determine the innate susceptibility to aminoglycoside antibiotics in rapidly growing mycobacteria. J Antimicrob Chemother 70:1412–1419. doi:10.1093/jac/dku550

    Article  CAS  PubMed  Google Scholar 

  • Maus CE, Plikaytis BB, Shinnick TM (2005a) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:3192–3197. doi:10.1128/AAC.49.8.3192-3197.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maus CE, Plikaytis BB, Shinnick TM (2005b) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:571–577. doi:10.1128/AAC.49.2.571-577.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure WR, Cech CL (1978) On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253:8949–8956

    CAS  PubMed  Google Scholar 

  • Migliori GB, De Iaco G, Besozzi G, Centis R, Cirillo DM (2007a) First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill 12:E070517 070511

    Google Scholar 

  • Migliori GB, Ortmann J, Girardi E, Besozzi G, Lange C, Cirillo DM, Ferrarese M, De Iaco G, Gori A, Raviglione MC, Group STS (2007b) Extensively drug-resistant tuberculosis, Italy and Germany. Emerg Infect Dis 13:780–782. doi:10.3201/eid1305.060200

    Article  PubMed  PubMed Central  Google Scholar 

  • Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G, Ribeiro AL, Manganelli R, Riccardi G (2009) Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis (Edinb) 89:84–90. doi:10.1016/j.tube.2008.08.003

    Article  CAS  Google Scholar 

  • Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD (2015) Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother 59:5097–5106. doi:10.1128/AAC.00647-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC (2003) ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 47:3799–3805. doi:10.1128/AAC.47.12.3799-3805.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y, Heifets L, Pieters J, Schoolnik G, Thompson CJ (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:12200–12205. doi:10.1073/pnas.0505446102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motiwala AS, Dai Y, Jones-Lopez EC, Hwang SH, Lee JS, Cho SN, Via LE, Barry CE, Alland D (2010) Mutations in extensively drug-resistant Mycobacterium tuberculosis that do not code for known drug-resistance mechanisms. J Infect Dis 201:881–888. doi:10.1086/650999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee JS, Rich ML, Socci AR, Joseph JK, Viru FA, Shin SS, Furin JJ, Becerra MC, Barry DJ, Kim JY, Bayona J, Farmer P, Smith Fawzi MC, Seung KJ (2004) Programmes and principles in treatment of multidrug-resistant tuberculosis. Lancet 363:474–481. doi:10.1016/S0140-6736(04)15496-2

    Article  PubMed  Google Scholar 

  • Nachega JB, Chaisson RE (2003) Tuberculosis drug resistance: a global threat. Clin Infect Dis 36(Suppl 1):S24–S30

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223

    Article  CAS  PubMed  Google Scholar 

  • Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA (2007) Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 51:1563–1565. doi:10.1128/AAC.01326-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosova EY, Bukatina AA, Isaeva YD, Makarova MV, Galkina KY, Moroz AM (2013) Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J Med Microbiol 62:108–113. doi:10.1099/jmm.0.046821-0

    Article  CAS  PubMed  Google Scholar 

  • Pages JM, Masi M, Barbe J (2005) Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11:382–389. doi:10.1016/j.molmed.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Axelsson-Robertson R, Rao MV, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M (2015) Totally drug-resistant tuberculosis and adjunct therapies. J Intern Med 277:388–405. doi:10.1111/joim.12264

    Article  CAS  PubMed  Google Scholar 

  • Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G (2004) Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3175–3178. doi:10.1128/AAC.48.8.3175-3178.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry CM, Jarvis B (2001) Linezolid: a review of its use in the management of serious gram-positive infections. Drugs 61:525–551

    Article  CAS  PubMed  Google Scholar 

  • Petrella S, Cambau E, Chauffour A, Andries K, Jarlier V, Sougakoff W (2006) Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother 50:2853–2856. doi:10.1128/AAC.00244-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plinke C, Cox HS, Zarkua N, Karimovich HA, Braker K, Diel R, Rusch-Gerdes S, Feuerriegel S, Niemann S (2010) embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J Antimicrob Chemother 65:1359–1367. doi:10.1093/jac/dkq120

    Article  CAS  PubMed  Google Scholar 

  • Protopopova M, Hanrahan C, Nikonenko B, Samala R, Chen P, Gearhart J, Einck L, Nacy CA (2005) Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 56:968–974. doi:10.1093/jac/dki319

    Article  CAS  PubMed  Google Scholar 

  • Quan S, Venter H, Dabbs ER (1997) Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother 41:2456–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quemard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR Jr, Blanchard JS (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34:8235–8241

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Int J Tuberc Lung Dis 79:3–29

    Article  CAS  Google Scholar 

  • Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, El Sahly H, Moghazeh SL, Kreiswirth BN, Musser JM (2000) Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44:326–336. doi:10.1128/AAC.44.2.326-336.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy SV, Reich R, Dou SJ, Jasperse L, Pan X, Wanger A, Quitugua T, Graviss EA (2003) Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:1241–1250. doi:10.1128/AAC.47.4.1241-1250.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Busby SM, Valafar F (2015) Systematic review of mutations in pyrazinamidase associated with pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 59:5267–5277. doi:10.1128/AAC.00204-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon-Garcia S, Mick V, Dainese E, Martin C, Thompson CJ, De Rossi E, Manganelli R, Ainsa JA (2012) Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56:2074–2083. doi:10.1128/AAC.05946-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi N, Labrousse V, Goh KS (1996) In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol 33:167–175. doi:10.1007/s002849900095

    Article  CAS  PubMed  Google Scholar 

  • Reddy VM, O’Sullivan JF, Gangadharam PR (1999) Antimycobacterial activities of riminophenazines. J Antimicrob Chemother 43:615–623. doi:10.1093/jac/43.5.615

    Article  CAS  PubMed  Google Scholar 

  • Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57:1857–1865. doi:10.1128/AAC.02191-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282. doi:10.1111/j.1365-2958.2004.04120.x

    Article  CAS  PubMed  Google Scholar 

  • Richter E, Rusch-Gerdes S, Hillemann D (2007) First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1534–1536. doi:10.1128/AAC.01113-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues L, Ainsa JA, Amaral L, Viveiros M (2011) Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat Antiinfect Drug Discov 6:118–127. doi:10.2174/157489111796064579

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Machado D, Couto I, Amaral L, Viveiros M (2012) Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect Genet Evol 12:695–700. doi:10.1016/j.meegid.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  • Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279:98–102. doi:10.1126/science.279.5347.98

    Article  CAS  PubMed  Google Scholar 

  • Sacksteder KA, Protopopova M, Barry CE III, Andries K, Nacy CA (2012) Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol 7:823–837. doi:10.2217/fmb.12.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R, Alland D (2013) Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-beta-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 45:1190–1197. doi:10.1038/ng.2743

    Article  CAS  PubMed  Google Scholar 

  • Schrag SJ, Perrot V (1996) Reducing antibiotic resistance. Nature 381:120–121. doi:10.1038/381120b0

    Article  CAS  PubMed  Google Scholar 

  • Seifert M, Catanzaro D, Catanzaro A, Rodwell TC (2015) Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One 10, e0119628. doi:10.1371/journal.pone.0119628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE III, Stover CK (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641–1643. doi:10.1126/science.272.5268.1641

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE III, Wang H, Zhang W, Zhang Y (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333:1630–1632. doi:10.1126/science.1208813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Chen J, Feng J, Cui P, Zhang S, Weng X, Zhang W, Zhang Y (2014) Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect 3, e58. doi:10.1038/emi.2014.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi S, Takhar P, Baldeviano C, Glover W, Zhang Y (2007) Isoniazid induces its own resistance in nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:2100–2104. doi:10.1128/AAC.00086-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons SO, Kristiansen JE, Hajos G, van der Laan T, Molnar J, Boeree MJ, van Ingen J, Christensen JB, Viveiros M, Riedl Z, Amaral L, van Soolingen D (2013a) Activity of the efflux pump inhibitor SILA 421 against drug-resistant tuberculosis. Int J Antimicrob Agents 41:488–489. doi:10.1016/j.ijantimicag.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  • Simons SO, Mulder A, van Ingen J, Boeree MJ, van Soolingen D (2013b) Role of rpsA gene sequencing in diagnosis of pyrazinamide resistance. J Clin Microbiol 51:382. doi:10.1128/JCM.02739-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE III (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322:1392–1395. doi:10.1126/science.1164571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Jain A, Dixit P, Prakash S, Jaiswal I, Venkatesh V, Singh M (2015) Prevalence of gyrA and B gene mutations in fluoroquinolone-resistant and -sensitive clinical isolates of Mycobacterium tuberculosis and their relationship with MIC of ofloxacin. J Antibiot (Tokyo) 68:63–66. doi:10.1038/ja.2014.95

    Article  CAS  Google Scholar 

  • Siu GK, Zhang Y, Lau TC, Lau RW, Ho PL, Yew WW, Tsui SK, Cheng VC, Yuen KY, Yam WC (2011) Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 66:730–733. doi:10.1093/jac/dkq519

    Article  CAS  PubMed  Google Scholar 

  • Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR Jr, Telenti A, Musser JM (1997) Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 41:1677–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N (2014) Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 1, CD009593. doi:10.1002/14651858.CD009593.pub3

    Google Scholar 

  • Stottmeier KD, Beam RE, Kubica GP (1967) Determination of drug susceptibility of mycobacteria to pyrazinamide in 7H10 agar. Am Rev Respir Dis 96:1072–1075

    CAS  PubMed  Google Scholar 

  • Stover CK, Warrener P, Van Devanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966. doi:10.1038/35016103

    Article  CAS  PubMed  Google Scholar 

  • Szumowski JD, Lynch JB (2015) Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des Devel Ther 9:677–682. doi:10.2147/DDDT.S60923

    PubMed  PubMed Central  Google Scholar 

  • Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE III, Boshoff HI (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809. doi:10.1128/AAC.05708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Kilburn JO (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33:1493–1499. doi:10.1128/AAC.33.9.1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, Cole ST, Jacobs WR Jr, Telenti A (1994) Cloning and nucleotide sequence of Mycobacterium tuberculosisgyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38:773–780. doi:10.1128/AAC.38.4.773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiff HE, Cimino M, Musso MC, Weisbrod T, Martinez R, Delgado MB, Salazar L, Bloom BR, Jacobs WR Jr (1996) Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci U S A 93:362–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Hu Z, Zhang T, Cai X, Kuang H, Liu Y, Chen J, Yang F, Zhang K, Tan S, Zhao Y (2014) Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J Clin Microbiol 52:291–297. doi:10.1128/JCM.01903-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650. doi:10.1016/0140-6736(93)90417-F

    Article  CAS  PubMed  Google Scholar 

  • Udwadia ZF (2012) Totally drug-resistant tuberculosis in India: who let the djinn out? Respirology 17:741–742. doi:10.1111/j.1440-1843.2012.02192.x

    Article  PubMed  Google Scholar 

  • Udwadia Z, Vendoti D (2013) Totally drug-resistant tuberculosis (TDR-TB) in India: every dark cloud has a silver lining. J Epidemiol Community Health 67:471–472. doi:10.1136/jech-2012-201640

    Article  PubMed  Google Scholar 

  • Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54:579–581. doi:10.1093/cid/cir889

    Article  PubMed  Google Scholar 

  • Van Deun A, Maug AK, Salim MA, Das PK, Sarker MR, Daru P, Rieder HL (2010) Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182:684–692. doi:10.1164/rccm.201001-0077OC

    Article  PubMed  Google Scholar 

  • Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, Ziazarifi AH, Hoffner SE (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136:420–425. doi:10.1378/chest.08-2427

    Article  PubMed  Google Scholar 

  • Vilcheze C, Jacobs WR Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50. doi:10.1146/annurev.micro.61.111606.122346

    Article  CAS  PubMed  Google Scholar 

  • Vilcheze C, Weisbrod TR, Chen B, Kremer L, Hazbon MH, Wang F, Alland D, Sacchettini JC, Jacobs WR Jr (2005) Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49:708–720. doi:10.1128/AAC.49.2.708-720.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcheze C, Av-Gay Y, Attarian R, Liu Z, Hazbon MH, Colangeli R, Chen B, Liu W, Alland D, Sacchettini JC, Jacobs WR Jr (2008) Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69:1316–1329. doi:10.1111/j.1365-2958.2008.06365.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield MG, Soeters HM, Warren RM, York T, Sampson SL, Streicher EM, van Helden PD, van Rie A (2015a) A global perspective on pyrazinamide resistance: systematic review and meta-analysis. PLoS One 10, e0133869. doi:10.1371/journal.pone.0133869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitfield MG, Warren RM, Streicher EM, Sampson SL, Sirgel FA, van Helden PD, Mercante A, Willby M, Hughes K, Birkness K, Morlock G, van Rie A, Posey JE (2015b) Mycobacterium tuberculosis pncA polymorphisms that do not confer pyrazinamide resistance at a breakpoint concentration of 100 Micrograms per Milliliter in MGIT. J Clin Microbiol 53:3633–3635. doi:10.1128/JCM.01001-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1997) Treatment of tuberculosis: guidelines for national programmes. WHO/TB/97.220. Accessed 26 Oct 2015

    Google Scholar 

  • WHO (2000) Guidelines for establishing DOTS-PLUS pilot projects for the management of multidrug-resitant tuberculosis (MDR-TB). WHO/CDS/TB/2000.279. Accessed 3 Nov 2015

    Google Scholar 

  • WHO (2008) Management of MDR-TB: a field guide: a companion document to guidelines for programmatic management of drug-resistant TB: integrated management of adolescent and adult illness (IMAI). WHO/HTM/TB/2008.402a. Accessed 3 Nov 2015

    Google Scholar 

  • WHO (2015) Global tuberculosis report. WHO/HTM/TB/2015.22. Accessed 5 Nov 2015

    Google Scholar 

  • Willby M, Sikes RD, Malik S, Metchock B, Posey JE (2015) Correlation between GyrA substitutions and ofloxacin, levofloxacin, and moxifloxacin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 59:5427–5434. doi:10.1128/AAC.00662-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolucka BA (2008) Biosynthesis of D-arabinose in mycobacteria – a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 275:2691–2711. doi:10.1111/j.1742-4658.2008.06395.x

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Jia H, Huang H, Sun Z, Zhang Z (2015) Mutations found in embCAB, embR, and ubiA genes of ethambutol-sensitive and -resistant Mycobacterium tuberculosis clinical isolates from China. Biomed Res Int 2015:951706. doi:10.1155/2015/951706

    PubMed  PubMed Central  Google Scholar 

  • Yamada T, Mizugichi Y, Nierhaus KH, Wittmann HG (1978) Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275:460–461. doi:10.1038/275460a0

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H (2011) Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286:10276–10287. doi:10.1074/jbc.M110.200501

    Article  CAS  PubMed  Google Scholar 

  • Zainuddin ZF, Dale JW (1990) Does Mycobacterium tuberculosis have plasmids? Tubercle 71:43–49

    Article  CAS  PubMed  Google Scholar 

  • Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106:20004–20009. doi:10.1073/pnas.0907925106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechini B, Versace I (2009) Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov 4:37–50. doi:10.2174/157489109787236256

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7:6–21

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yew WW (2009) Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13:1320–1330

    CAS  PubMed  Google Scholar 

  • Zhang S, Chen J, Shi W, Liu W, Zhang W, Zhang Y (2013) Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2, e34. doi:10.1038/emi.2013.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Chen J, Cui P, Shi W, Zhang W, Zhang Y (2015a) Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 70:2507–2510. doi:10.1093/jac/dkv150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu L, Zhang Y, Dai G, Huang H, Jin Q (2015b) Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother 59:1320–1324. doi:10.1128/AAC.03695-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Yan J, Xu K, Ji Z, Li L (2015c) Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. BMC Infect Dis 15:153. doi:10.1186/s12879-015-0905-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao F, Wang XD, Erber LN, Luo M, Guo AZ, Yang SS, Gu J, Turman BJ, Gao YR, Li DF, Cui ZQ, Zhang ZP, Bi LJ, Baughn AD, Zhang XE, Deng JY (2014) Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:1479–1487. doi:10.1128/AAC.01775-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, Pethe K, Camacho LR (2013) para-Aminosalicylic acid is a prodrug targeting dihydrofolatereductase in Mycobacterium tuberculosis. J Biol Chem 288:23447–23456. doi:10.1074/jbc.M113.475798

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE, Ashkin D, Auclair B, Berning SE, Jelliffe RW, Jaresko GS, Peloquin CA (2004) Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis 8:1360–1367

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded, in part, by the Intramural Research Program of the NIAID and by grants from the Foundation for the National Institutes of Health. SLS is funded by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation (NRF) of South Africa, award number UID 86539. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail E. Louw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Louw, G.E., Sampson, S.L. (2017). Implications of Chromosomal Mutations for Mycobacterial Drug Resistance. In: Arora, G., Sajid, A., Kalia, V. (eds) Drug Resistance in Bacteria, Fungi, Malaria, and Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48683-3_10

Download citation

Publish with us

Policies and ethics