Skip to main content

Decreasing Time Consumption of Microscopy Image Segmentation Through Parallel Processing on the GPU

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10016))

Abstract

The computational performance of graphical processing units (GPUs) has improved significantly. Achieving speedup factors of more than 50x compared to single-threaded CPU execution are not uncommon due to parallel processing. This makes their use for high throughput microscopy image analysis very appealing. Unfortunately, GPU programming is not straightforward and requires a lot of programming skills and effort. Additionally, the attainable speedup factor is hard to predict, since it depends on the type of algorithm, input data and the way in which the algorithm is implemented. In this paper, we identify the characteristic algorithm and data-dependent properties that significantly relate to the achievable GPU speedup. We find that the overall GPU speedup depends on three major factors: (1) the coarse-grained parallelism of the algorithm, (2) the size of the data and (3) the computation/memory transfer ratio. This is illustrated on two types of well-known segmentation methods that are extensively used in microscopy image analysis: SLIC superpixels and high-level geometric active contours. In particular, we find that our used geometric active contour segmentation algorithm is very suitable for parallel processing, resulting in acceleration factors of 50x for 0.1 megapixel images and 100x for 10 megapixel images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012)

    Article  Google Scholar 

  2. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vision 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crookes, D., Miller, P., Gribben, H., Gillan, C., McCaughey, D.: GPU Implementation of MAP-MRF for microscopy imagery segmentation. In: Proceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 526–529 (2009)

    Google Scholar 

  6. Goossens, B., De Vylder, J., Philips, W.: Quasar: a new heterogeneous programming framework for image and video processing algorithms on CPU and GPU. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2183–2185 (2014)

    Google Scholar 

  7. He, Z., Kuester, F.: GPU-based active contour segmentation using gradient vector flow. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 191–201. Springer, Heidelberg (2006). doi:10.1007/11919476_20

    Chapter  Google Scholar 

  8. Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., Denk, W.: Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461), 168–174 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23925239

    Article  Google Scholar 

  9. Holk, E., Pathirage, M., Chauhan, A., Lumsdaine, A., Matsakis, N.D.: GPU programming in rust: implementing high-level abstractions in a systems-level language. In: Proceedings - IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW 2013, pp. 315–324 (2013)

    Google Scholar 

  10. Huang, Y., Liu, Z.: Segmentation and tracking of lymphocytes based on modified active contour models in phase contrast microscopy images. Comput. Math. Methods Med. 2015, 1–9 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Jain, V., Turaga, S.C., Briggman, K.L., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: Advances in Neural Information Processing Systems, pp. 1–9 (2011)

    Google Scholar 

  12. Jorstad, A., Fua, P.: Refining mitochondria segmentation in electron microscopy imagery with active surfaces. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 367–379. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16220-1_26

    Google Scholar 

  13. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imaging 31, 474–486 (2012)

    Article  Google Scholar 

  14. Meziou, L., Histace, A., Precioso, F., Matuszewski, B.J., Murphy, M.F.: Confocal microscopy segmentation using active contour based on alpha (\(\alpha \))-divergence. In: Proceedings of the International Conference on Image Processing, pp. 3077–3080 (2011)

    Google Scholar 

  15. Ragan-Kelley, J., Adams, A., Paris, S., Durand, F., Barnes, C., Amarasinghe, S.: Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 519–530 (2013)

    Google Scholar 

  16. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of SLIC superpixel segmentation. University of Oxford, Department of Engineering Science, pp. 1–6 (2011)

    Google Scholar 

  17. Stegmaier, J., Amat, F., Lemon, W.C., McDole, K., Wan, Y., Teodoro, G., Mikut, R., Keller, P.J.: Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36(2), 225–240 (2016)

    Article  Google Scholar 

  18. Wang, S., Cao, G., Wei, B., Yin, Y., Yang, G., Li, C.: Hierarchical level features based trainable segmentation for electron microscopy images. BioMed. Eng. OnLine 12, 59 (2013). http://www.biomedical-engineering-online.com/content/12/1/59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris Roels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Roels, J., De Vylder, J., Saeys, Y., Goossens, B., Philips, W. (2016). Decreasing Time Consumption of Microscopy Image Segmentation Through Parallel Processing on the GPU. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics