Skip to main content

Thermodynamic Methods to Evaluate Resources

  • Chapter
  • First Online:
Thermodynamics for Sustainable Management of Natural Resources

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Natural resources can be evaluated from different points of view. One of them, and perhaps the most commonly known is the economic point of view. Nevertheless, the price-fixing mechanisms, rarely take into account the concrete physical characteristics which make them valuable. But natural resources have at least two physical features which make minerals or fresh water for example unusual: a particular composition which differentiates them from the surrounding environment and a distribution which places them in a specific concentration. These intrinsic properties can be in fact evaluated from a thermodynamic point of view in terms of exergy. Chapter 6 presents in details how to evaluate resources quality applying exergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valero, A., Ranz, L., & Botero, E. (2002). Exergetic evaluation of natural mineral capital (1) reference environment and methodology. In Proceedings of ECOS 2002. Berlin, July 2002.

    Google Scholar 

  2. Szargut, J. (1989). Chemical exergies of the elements. Applied Enegy, 32, 269–285.

    Article  Google Scholar 

  3. Szargut, J. (1987). Standard chemical exergy of some elements and their compounds, based upon the concentration in earth’s crust. Geochemistry International, 35(1–2), 53–60.

    Google Scholar 

  4. Szargut, J. (2005). Exergy method: Technical and ecological applications. UK: WIT-press.

    Google Scholar 

  5. Szargut, J., & Morris, D. R. (1985). Calculation of standard chemical exergy of some elements and their compounds based upon seawater as the datum level substance. Bulletin of the Polish Academy of Sciences. Technical Sciences, 33(5–6), 293–305.

    Google Scholar 

  6. Rivero, R., & Garfias, M. (2004). Standard chemical exergy updated. Part II. In R. Palido, R. Rivero, L. Monroy & G. Tsatsaronis (Eds), Proceedings of ECOS 2004 (pp. 773–786). Guanajuato, Mexico.

    Google Scholar 

  7. Riekert, L. (1974). The efficiency of energy utilization in chemical processes. Chemical Engineering Science, 29, 1613–1620.

    Article  Google Scholar 

  8. Szargut, J., Valero, A., Stanek, W., Valero D., A. (2005). Towards an international legal reference environment. In: Proceedings of Conference ECOS 2005. Trondheim, Norway.

    Google Scholar 

  9. Valero, A., & Valero, A. (2012). From grave to cradle. A thermodynamic approach for accounting for abiotic resource depletion. Journal of Industrial Ecology, 17, 43–52.

    Article  Google Scholar 

  10. Valero, A., Valero, A., Gomez, J. (2011). The crepuscular planet. A model for the exhausted continental crust. Energy, 36, 694–707.

    Google Scholar 

  11. Valero, A., Valero D., A. (2012). Exergy of comminution and the Thanatia Earth’s model. Energy, 44, 1085–1093.

    Google Scholar 

  12. Valero, A., & Valero, D. A. T. (2014). The destiny of the earth’s mineral resources. Singapore: World Scientific Publishing.

    Google Scholar 

  13. Exergy calculator. www.exergoecology.com. Last accessed May 3, 2016.

  14. Domínguez, A., Czarnowska, L., Valero, A., Stanek, W., & Valero, A. (2014). Thermo-ecological and exergy replacement costs of nickel processing. Energy, 72, 103–114.

    Article  Google Scholar 

  15. Stanek, W., Szega, M., Blacha, L., Niesler, M., & Gawron, M. (2015). Exergo-ecological assessment of auxiliary fuel injection into blast-furnace. Archives of Metallurgy and Materials, 60(2), 711–719.

    Article  Google Scholar 

  16. Finneveden, G., & Ostlund, P. (1997). Exergies of natural resources in life-cycle assessment and other applications. Energy, 22(9), 923–931.

    Article  Google Scholar 

  17. Szargut, J., & Stanek, W. (2012). Fuel part and mineral part of the thermoecological cost. International Journal of Thermodynamics, 15(4), 187–190.

    Google Scholar 

  18. Szargut, J. (1999). Exergy in thermal systems analysis. Rozdział książki: A. Bejan & E. Mamut (Eds), Thermodynamic optimization of complex energy systems (pp. 137–150). Netherlands: Kluwer Acad. Publishers.

    Google Scholar 

  19. Tani, F., Haldi P.A., & Favrat, D. (2010). Exergy-based comparison of the nuclear fuel cycles of light water and generation iv reactors. In: Proceedings of Conference ECOS 2010. Lausanne, Switzerland.

    Google Scholar 

  20. Duderstadt, J. J., & Hamilton, L. J. (1976). Nuclear reactor analysis. New York: Wiley.

    Google Scholar 

  21. Role of Alternative Energy Sources: Nuclear Technology Assessment. DOE/NETL-2011/1502. August 8, 2012. National Energy Technology Laboratory. www.netl.doe.gov, last accessed January 23, 2014.

  22. Celinski, Z., & Strupczewski, A. (1984). Nuclear Power. WNT Warszawa (in Polish).

    Google Scholar 

  23. Lenzen, M. (2008). Life cycle energy and greenhouse gas emissions of nuclear energy: A review. Energy Conversion and Management, 49, 2178–2199.

    Article  Google Scholar 

  24. Smolec, W. (2000). Photo-thermical conversion of solar energy. Warszawa (in Polish): Wydawnictwo Naukowe PWN.

    Google Scholar 

  25. Pluta, Z. (2000). Fundamentals on photo-thermic konwersion of solar radiation. Warszawa (in Polish): Oficyna Wydawnicza Politechniki Warszawskiej.

    Google Scholar 

  26. Lewandowski, W. M. (2012). Pro-ecological renewable energy sources. WNT Warszawa (in Polish).

    Google Scholar 

  27. Stanek, W., & Gazda, W. (2014). Exergo-ecological evaluation of adsorption chiller system. Energy, 76, 42–48.

    Article  Google Scholar 

  28. Deng, J., Wang, R., Wu, J., Han, G., Wua, D., & Li, S. (2008). Exergy cost analysis of a microtrigeneration system based on the structural theory of thermoeconomics. Energy, 33, 1417–1426.

    Article  Google Scholar 

  29. Habib, K., Choudhury, B., Chatterjee, P. K., & Saha, B. B. (2013). Study on a solar heat driven dual-mode adsorption chiller. Energy, 63, 133–141.

    Article  Google Scholar 

  30. Zaleta-Aguilar, A., Ranz, L., & Valero, A. (1998). Towards a unified measure of renewable resources availability: The exergy method applied to the water of a river. Energy Conversion Management, 39(16–18): 1911–1917, Pergamon.

    Google Scholar 

  31. Martínez, A., & Uche, J. (2010). Exergy of organic matter in a water flow. Energy, 35, 77–84.

    Article  Google Scholar 

  32. Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook. Mc-Graw-Hill: Knovel.

    Google Scholar 

  33. Klotz, I. M., & Rosenberg, R. M. (1977). Termodinámica Química. Editorial AC: Teoría y métodos básicos.

    Google Scholar 

  34. Catalan Water Agency. (2008). Catalan water agency website. Generalitat de Catalunya. Available at: http://aca-web.gencat.cat/aca/appmanager/aca/aca/

  35. Pérez-González, A., Urtiaga, A. M., Ibáñez, R., & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Research, 46, 267–283.

    Article  Google Scholar 

  36. Hellström, D. (1997). An exergy analysis for a wastewater treatment plant-an estimation of the consumption of physical resources. Water Environment Research, 69(1), 44–51.

    Article  Google Scholar 

  37. Hellström, D. (2003). Exergy analysis of nutrient recovery processes. Water Science and Technology, 48(1): 27–36. IWA Publishing.

    Google Scholar 

  38. Foster, J. W. (1943). Oxidation of alcohols by non-sulfur photosynthetic bacteria. Journal Bacteriol. 47(4): 355–372.

    Google Scholar 

  39. Surampalli, R. Y. (2004). Advances in water and wastewater treatment. USA: ASCE Publications.

    Google Scholar 

  40. Martínez, A. (2009). Exergy cost assessment of water rsources: Pyhsical hydronomics (Ph. D. Thesis). University of Zaragoza, Zaragoza.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Stanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stanek, W., Valero, A., Valero, A., Uche, J., Calvo, G. (2017). Thermodynamic Methods to Evaluate Resources. In: Stanek, W. (eds) Thermodynamics for Sustainable Management of Natural Resources . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-48649-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48649-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48648-2

  • Online ISBN: 978-3-319-48649-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics