Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1039 Accesses

Abstract

We first review the necessary components of electrodynamics and establish a practical notion of optical excitations. Next, we specialize to plasmonic excitations, and discuss their classical features. Finally, we cover theoretical aspects of techniques that probe the properties of plasmons in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The low-frequency degeneracy pressure of a Dirac system of density \(n=N/A\) is derivable as the (negative) area (A) derivative of the total internal energy \(U \propto N^{3/2}A^{-1/2}\) for fixed particle number N.

  2. 2.

    The previously non-subscripted conductivity \(\sigma =\sigma _{\scriptscriptstyle \text {intra}} + \sigma _{\scriptscriptstyle \text {inter}} \) is here appended with a B-subscript in anticipation of an impending need to differentiate several distinct local conductivity contributions.

  3. 3.

    We remind the low-loss low-temperature intra- and interband conductivities of Eq. (4.12): \(\sigma _{\scriptscriptstyle \text {intra}} (\omega )= \frac{ \mathrm {i} e^2}{\pi \hbar \tilde{\omega } }\) and \(\sigma _{\scriptscriptstyle \text {inter}} (\omega ) = \frac{ \mathrm {i} e^2}{4\pi \hbar } \ln \big |\frac{2- \tilde{\omega } }{2+ \tilde{\omega } }\big |\).

  4. 4.

    The inclusion of loss, absent in the above considerations, can be achieved by straightforward modifications to \(\sigma _{B}(\omega )\) and the substitution \(\beta ^2\!\rightarrow \!\tfrac{\omega }{\omega + \mathrm {i} \gamma }\beta ^2\), see Eq. (3.13) and our earlier treatment of the parabolic HMD.

  5. 5.

    An error exists in the specification of the Green function employed in Ref. [6]. We indicate the correct form here: for width-normalized momenta q and coordinates x, it should read \(G(x,x') = \frac{1}{2q}\Big \lbrace \mathrm {e}^{-q|x-x'|}+\frac{\mathrm {e}^{-q}\cosh [q(x-x')]+\cosh [q(x+x')]}{\sinh q}\Big \rbrace \), as derivable from a minor extension of the half-sheet result [7].

  6. 6.

    Surprisingly, the earliest discussions of edge states in graphene precede its discovery by nearly two decades [11], studied then in the context of stacked benzene-chains.

  7. 7.

    Lieb [13] offered a similar argument even earlier than Inui et al. [12], but did not comment directly on edge localization.

  8. 8.

    The variation of coupling strength for edge-atoms is also ignored in the TB considerations to be discussed shortly—pragmatically, we assume the otherwise dangling bonds passivated by hydrogen atoms, and neglect \(p_z\)-orbital modifications arising therefrom.

  9. 9.

    \(\text {DOS}( {\epsilon } )= \tfrac{2}{\pi \mathcal {A}}\text {Im} \sum _j \frac{1}{ {\epsilon } _{j} - {\epsilon } - \mathrm {i} \hbar \eta }\) for sample area \(\mathcal {A}\) and level-broadening \(\eta \).

  10. 10.

    \(\text {LDOS}( \mathbf {r} _l, {\epsilon } ) = \tfrac{2}{\pi \mathcal {A}}\text {Im} \sum _j \frac{|\psi _{jl}|^2}{ {\epsilon } _{j} - {\epsilon } - \mathrm {i} \hbar \eta }\).

  11. 11.

    An additional class of localized states arise near the van Hove singularity at \(\pm t_{\textsc {ab}}\) (but does not appear in the energy range of Fig. 6.3).

  12. 12.

    Further and much earlier support is found in the 1996 treatment of Ref. [19], in their (numerical) consideration of arbitrarily terminated nanoribbons.

  13. 13.

    For brevity, and since there is no chance of confusion, we henceforth omit explicit declaration of in-plane quantities, i.e. we omit \(\parallel \)-subscripts.

  14. 14.

    The real-space form of \(\chi ^0\) is central to the linear-response real-space and frequency-formulation of TDDFT, sometimes referred to as the Lehmann representation [37], which in allows accounting of the (dynamic) effects of xc-interaction.

  15. 15.

    Equivalently, the RPA density-density function \(\varvec{\chi }^{\textsc {rpa}} = \varvec{\chi }^0(1-e^2\varvec{V}\varvec{\chi }^0)^{-1}=(1-e^2\varvec{\chi }^0 \varvec{V})^{-1}\varvec{\chi }^0\) relates the induced charge density to the external perturbation via \(\varvec{\rho } = e^2\varvec{\chi }^{\textsc {rpa}}\varvec{\phi }^{\scriptscriptstyle \text {ext}} \).

  16. 16.

    We assume a perturbation effective from \(t=0\), such that the ground state density is given by \(n_l(0)\).

  17. 17.

    Strictly speaking, a time-ordering operator \(\hat{\mathcal {T}}\) should be included in the exponential form of \(\hat{U}(t,t')\)—but its absence is of no consequence presently.

  18. 18.

    While this heuristic approach to loss provides an excellent (TDDFT-) account of nonlinearities in e.g. molecules, it is not appropriate to transfer to plasmonic circumstances, where field-enhancement plays a major dynamic role. In our calculations, we use perturbations of sufficient weakness to ensure linearity.

  19. 19.

    All time-domain calculations discussed here assume zero temperature, i.e. \(T=0\).

  20. 20.

    A meaningful assessment of nonclassical shifts require—in addition to precise quantum predictions—a highly accurate classical approach: crucially, the specialized methods discussed in Sect. 5.3.2 achieve this.

  21. 21.

    In the opposite limit of very small sizes, \(\sqrt{\text {area}}\lesssim 8\text { nm}\), the plasmon peak is poorly developed, involving just a few single-particle transitions.

  22. 22.

    Equation (6.13) is strictly speaking a Dirac–Weyl equation, differentiated from the Dirac counterpart by the absence of a mass-term. Nevertheless, the distinction is seldom emphasized for graphene.

  23. 23.

    Their relevant Kronecker products have the explicit forms: \( \tau _{\scriptscriptstyle 0} \otimes \sigma _x \!=\! \left[ {\begin{matrix} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 &{} 0 \end{matrix}}\right] \) and \( \tau _z\otimes \sigma _y \!=\! \left[ {\begin{matrix} 0 &{} - \mathrm {i} &{} 0 &{} 0 \\ \mathrm {i} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \mathrm {i} \\ 0 &{} 0 &{} - \mathrm {i} &{} 0 \end{matrix}}\right] \).

  24. 24.

    We note two additional BCs for general domains \(\Omega \) with boundary normal \(\hat{\mathbf {n}} = \big [ {\begin{matrix} \cos \theta \\ \sin \theta \end{matrix}} \big ]\):

    1. a.

      AC terminations admix the valleys at \( \mathbf {r} \in \partial \Omega \): \(\psi _{\textsc {a},\textsc {b}}^+( \mathbf {r} )/\psi _{\textsc {a},\textsc {b}}^-( \mathbf {r} )= -\mathrm {e}^{ \mathrm {i} ( \mathbf {K} ^- - \mathbf {K} ^+)\cdot \mathbf {r} }\) [48].

    2. b.

      Infinite mass confinement—included by a term \( v_{\textsc {f}} ^2 m( \mathbf {r} )\sigma _z\) with \(m( \mathbf {r} ) = \big \lbrace {\begin{matrix} 0, &{} \mathbf {r} \in \Omega \\ \infty , &{} \mathbf {r} \notin \Omega \end{matrix}}\) added into \(\hat{H}_{\textsc {d}}^\kappa \)—decouples the valleys but enforces a sublattice phase relation \(\phi _{\textsc {b}}^\kappa ( \mathbf {r} )/\psi _{\textsc {a}}^\kappa ( \mathbf {r} ) = \mathrm {i} \mathrm {e}^{ \mathrm {i} \kappa \theta }\) at \( \mathbf {r} \in \partial \Omega \) [49].

  25. 25.

    In words, this double series sums all dipole-allowed transitions between filled edge states and empty bulk states.

  26. 26.

    In all cases, level-quantization also plays a role, particularly in the very small size limit, fracturing there the main plasmon peak into several subbands. In the semiclassical limit, it conceivably adds also to the nonlocal blueshift though, we expect, to a lesser degree.

  27. 27.

    The Kerr correction is of a self-focusing type, and accordingly must be augmented to include a saturating mechanism, or suffer runaway focusing (an issue familiar from optical waveguide modeling [75]). We achieve this in practice by using the two-level saturation model consistent with Eq. (6.18) plus a phenomenological accounting of two-photon absorption [73].

  28. 28.

    \(E_{\scriptscriptstyle (3)} \) is defined through a loss-modified frequency \(\tilde{\omega }^2_{\scriptscriptstyle (3)} \equiv (\omega +\tfrac{ \mathrm {i} }{2}\gamma )(\omega - \mathrm {i} \gamma )\). We emphasize that this frequency is not just \((\omega +\tfrac{ \mathrm {i} }{2}\gamma )^2\) as a linear time-relaxation approximation would suggest: this underscores our previous warning that the time-domain TB-RPA approach fails in the nonlinear regime, since it does not provide a dynamic accounting of loss.

  29. 29.

    Equation (6.19) is a special case of a general result derived in Publication A: for a nonperturbed setup \(\{\Omega ,f^{\scriptscriptstyle (0)} \}\) with solutions \(\{\zeta _\nu ^{\scriptscriptstyle (0)} , \mathbf {E} _\nu ^{\scriptscriptstyle (0)} \}\) subjected to a small perturbation \(f = f^{\scriptscriptstyle (0)} + f^{\scriptscriptstyle (1)} \), the perturbed eigenvalues \(\zeta _\nu \simeq \zeta _\nu ^{\scriptscriptstyle (0)} + \zeta _\nu ^{\scriptscriptstyle (1)} + \ldots \) attain a first-order shift \(\zeta _\nu ^{\scriptscriptstyle (1)} \simeq \zeta _\nu ^{\scriptscriptstyle (0)} \big \langle \mathbf {E} _\nu ^{\scriptscriptstyle (0)} \big |f^{\scriptscriptstyle (0)} f^{\scriptscriptstyle (1)} \big | \mathbf {E} _\nu ^{\scriptscriptstyle (0)} \big \rangle \big / \big \langle \mathbf {E} _\nu ^{\scriptscriptstyle (0)} \big |f^{\scriptscriptstyle (0)} \big | \mathbf {E} _\nu ^{\scriptscriptstyle (0)} \big \rangle \).

References

  1. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, 1976)

    Google Scholar 

  2. M. Müller, J. Schmalian, L. Fritz, Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009)

    Article  ADS  Google Scholar 

  3. M. Mendoza, H.J. Herrmann, S. Succi, Preturbulent regimes in grapheme flow. Phys. Rev. Lett. 106, 156601 (2011)

    Article  ADS  Google Scholar 

  4. M. Mendoza, H.J. Herrmann, S. Succi, Hydrodynamic model for conductivity in graphene. Sci. Rep. 3, 1052 (2013)

    ADS  Google Scholar 

  5. A.L. Fetter, Magnetoplasmons in a two-dimensional electron fluid: disk geometry. Phys. Rev. B 33, 5221 (1986)

    Article  ADS  Google Scholar 

  6. V. Cataudella, G. Iadonisi, Magnetoplasmons in a two-dimensional electron gas: strip geometry. Phys. Rev. B 35, 7443 (1987)

    Article  ADS  Google Scholar 

  7. A.L. Fetter, Edge magnetoplasmons in a two-dimensional electron fluid confined to a half-space. Phys. Rev. B 33, 3717 (1986)

    Article  ADS  Google Scholar 

  8. G.W. Hanson, Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56, 747 (2008)

    Article  ADS  Google Scholar 

  9. W. Wang, J.M. Kinaret, Plasmons in graphene nanoribbons: interband transitions and nonlocal effects. Phys. Rev. B 87, 195424 (2013)

    Article  ADS  Google Scholar 

  10. A. Fallahi, T. Low, M. Tamagnone, J. Perruisseau-Carrier, Nonlocal electromagnetic response of graphene nanostructures. Phys. Rev. B 91, 121405 (2015)

    Article  ADS  Google Scholar 

  11. K. Tanaka, S. Yamashita, H. Yamabe, T. Yamabe, Electronic properties of one-dimensional graphite family. Synth. Met. 17, 143 (1987)

    Article  Google Scholar 

  12. M. Inui, S.A. Trugman, E. Abrahams, Unusual properties of midband states in systems with offdiagonal disorder. Phys. Rev. B 49, 3190 (1994)

    Article  ADS  Google Scholar 

  13. E.H. Lieb, Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Wimmer, A.R. Akhmerov, F. Guinea, Robustness of edge states in grapheme quantum dots. Phys. Rev. B 82, 045409 (2010)

    Article  ADS  Google Scholar 

  15. T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, N.A. Mortensen, Classical and quantum plasmonics in graphene nanodisks: role of edge states. Phys. Rev. B 90, 241414(R) (2014)

    Article  ADS  Google Scholar 

  16. P. Delplace, D. Ullmo, G. Montambaux, Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011)

    Article  ADS  Google Scholar 

  17. M. Bellec, U. Kuhl, G. Montambaux, F. Mortessagne, Manipulation of edge states in microwave artificial graphene. New J. Phys. 16, 113023 (2014)

    Article  Google Scholar 

  18. A.R. Akhmerov, C.W.J. Beenakker, Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008)

    Article  ADS  Google Scholar 

  19. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in grapheme ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  20. Z. Klusek, Z. Waqar, E.A. Denisov, T.N. Kompaniets, I.V. Makarenko, A.N. Titkov, A.S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. Appl. Surf. Sci. 161, 508 (2000)

    Article  ADS  Google Scholar 

  21. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005)

    Article  ADS  Google Scholar 

  22. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Edge state on hydrogenterminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 73, 125415 (2006)

    Article  ADS  Google Scholar 

  23. K.A. Ritter, J.W. Lyding, the influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235 (2009)

    Article  ADS  Google Scholar 

  24. C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011)

    Article  Google Scholar 

  25. X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, M.S. Dresselhaus, Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86 (2011)

    Article  ADS  Google Scholar 

  26. M. Acik, Y.J. Chabal, Nature of graphene edges: a review. Jpn. J. Appl. Phys. 50, 070101 (2011)

    Article  ADS  Google Scholar 

  27. S.K. Hämäläinen, Z. Sun, M.P. Boneschanscher, A. Uppstu, M. Ijäs, A. Harju, D. Vanmaekelbergh, P. Liljeroth, Quantum-confined electronic states in atomically well-defined graphene nanostructures. Phys. Rev. Lett. 107, 236803 (2011)

    Article  ADS  Google Scholar 

  28. X. Jia, M. Hofmann, V. Meunier, B.G. Sumpter, J. Campos-Delgado, J.M. Romo- Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, M.S. Dresselhaus, Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701 (2009)

    Google Scholar 

  29. K. Kim, S. Coh, C. Kisielowski, M.F. Crommie, S.G. Louie, M.L. Cohen, A. Zettl, Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013)

    ADS  Google Scholar 

  30. L. Brey, H.A. Fertig, Elementary electronic excitations in graphene nanoribbons. Phys. Rev. B 75, 125434 (2007)

    Article  ADS  Google Scholar 

  31. S. Thongrattanasiri, A. Manjavacas, F.J. García de Abajo, Quantum finitesize effects in graphene plasmons. ACS Nano 6, 1766 (2012)

    Article  Google Scholar 

  32. S. Thongrattanasiri, F.J. García de Abajo, Optical field enhancement by strong plasmon interaction in graphene nanostructures. Phys. Rev. Lett. 110, 187401 (2013)

    Article  ADS  Google Scholar 

  33. A. Manjavacas, F. Marchesin, S. Thongrattanasiri, P. Koval, P. Nordlander, D. Sánchez-Portal, F.J. García de Abajo, Tunable molecular plasmons in polycyclic aromatic hydrocarbons. ACS Nano 7, 3635 (2013)

    Article  Google Scholar 

  34. A. Manjavacas, S. Thongrattanasiri, F.J. García de Abajo, Plasmons driven by single electrons in graphene nanoislands. Nanophotonics 2, 139 (2013)

    Article  ADS  Google Scholar 

  35. S. Thongrattanasiri, A. Manjavacas, P. Nordlander, F.J. García de Abajo, Quantum junction plasmons in graphene dimers. Laser Photonics Rev. 7, 297 (2013)

    Article  Google Scholar 

  36. I. Silveiro, J.M.P. Ortega, F.J. García de Abajo, Quantum nonlocal effects in individual and interacting nanoribbons. Light: Sci. Appl. 4, e241 (2015)

    Google Scholar 

  37. M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross (eds.), Time-Dependent Density Functional Theory. Lecture Notes in Physics (Springer, 2006)

    Google Scholar 

  38. E. Clementi, C. Roetti, Roothan-Hartree-Fock atomic wave functions. At. Data Nucl. Data Tables 14, 177 (1974)

    Article  ADS  Google Scholar 

  39. D.J. Rowe, An interpretation of time-dependent Hartree-Fock theory. Nucl. Phys. 80, 209 (1966)

    Article  Google Scholar 

  40. D.J. Rowe, Nuclear Collective Motion (World Scientific, 1970)

    Google Scholar 

  41. A. Castro, A first-principles time-dependent density functional theory scheme for the computation of the electromagnetic response of nanostructures, Ph.D. thesis, Universidad de Valladolid (2004)

    Google Scholar 

  42. A. Castro, M.A.L. Marques, A. Rubio, Propagators for the time-dependent Kohn-Sham equations. J. Chem. Phys. 121, 3425 (2004)

    Article  ADS  Google Scholar 

  43. D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurura, A.G. Borisov, Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333 (2012)

    Article  ADS  Google Scholar 

  44. J.D. Cox, F.J. García de Abajo, Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat. Commun. 5, 2014 (2014)

    Article  Google Scholar 

  45. E. Townsend, G.W. Bryant, Which resonances in smallmetallic nanoparticles are plasmonic? J. Opt. 16, 114022 (2014)

    Article  ADS  Google Scholar 

  46. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Google Scholar 

  47. E. McCann, V.I. Fal’ko, Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes. J. Phys.: Condens. Matter 16, 2371 (2004)

    ADS  Google Scholar 

  48. M. Zarenia, A. Chaves, G. Farias, F.M. Peeters, Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach. Phys. Rev. B 84, 245403 (2011)

    Article  ADS  Google Scholar 

  49. M.V. Berry, R.J. Mondragon, Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. R. Soc. Lond. A 412, 53 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  50. N.M.R. Peres, J.N.B. Rodrigues, T. Stauber, J.M.B. Lopes dos Santos, Dirac electrons in graphene-based quantumwires and quantumdots. J. Phys.: Condens. Matter 21, 344202 (2009)

    Google Scholar 

  51. B. Wunsch, T. Stauber, F. Guinea, Electron-electron interactions and charging effects in graphene quantum dots. Phys. Rev. B 77, 035316 (2008)

    Article  ADS  Google Scholar 

  52. M. Grujić, M. Zarenia, A. Chaves, M. Tadić, G.A. Farias, F.M. Peeters, Electronic and optical properties of a circular graphene quantum dot in a magnetic field: influence of the boundary conditions. Phys. Rev. B 84, 205441 (2011)

    Article  ADS  Google Scholar 

  53. G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, 2014)

    Google Scholar 

  54. T. Christensen, W. Yan, A.-P. Jauho, M. Wubs, N.A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons. Phys. Rev. B 92, 121407(R) (2015)

    Article  ADS  Google Scholar 

  55. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6, 737 (2012)

    Article  ADS  Google Scholar 

  56. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2008)

    Google Scholar 

  57. H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985)

    Google Scholar 

  58. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  59. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  60. P. Tassin, T. Koschny, C.M. Soukoulis, Graphene for terahertz applications. Science 341, 620 (2013)

    Article  ADS  Google Scholar 

  61. S.A. Mikhailov, K. Ziegler, Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.: Condens. Matter 20, 384204 (2008)

    ADS  Google Scholar 

  62. S.A. Mikhailov, Theory of the nonlinear optical frequency mixing effect in graphene. Phys. E 44, 924 (2012)

    Article  Google Scholar 

  63. J.L. Cheng, N. Vermeulen, J.E. Sipe, Third order optical nonlinearity of graphene. New J. Phys. 16, 053014 (2014)

    Article  ADS  Google Scholar 

  64. N.M.R. Peres, Y.V. Bludov, J.E. Santos, A.-P. Jauho, M.I. Vasilevskiy, Optical bistability of graphene in the terahertz range. Phys. Rev. B 90, 125425 (2014)

    Article  ADS  Google Scholar 

  65. P. Ginzburg, A. Hayat, N. Berkovitch, M. Orenstein, Nonlocal ponderomotive nonlinearity in plasmonics. Opt. Lett. 35, 1551 (2010)

    Article  ADS  Google Scholar 

  66. M.L. Nesterov, J. Bravo-Abad, A.Y. Nikitin, F.J. García-Vidal, L. Martin-Moreno, Graphene supports the propagation of subwavelength optical solitons. Laser Photonics Rev. 7, L7 (2013)

    Article  Google Scholar 

  67. D.A. Smirnova, A.V. Gorbach, I.V. Iorsh, I.V. Shadrivov, Y.S. Kivshar, Nonlinear switching with a graphene coupler. Phys. Rev. B 88, 045443 (2013)

    Article  ADS  Google Scholar 

  68. D.A. Smirnova, I.V. Shadrivov, A.I. Smirnov, Y.S. Kivshar, Dissipative plasmon-solitons in multilayer graphene. Laser Photonics Rev. 8, 291 (2014)

    Article  Google Scholar 

  69. D.A. Smirnova, R.E. Noskov, L.A. Smirnov, Y.S. Kivshar, Dissipative plasmon solitons in graphene nanodisk arrays. Phys. Rev. B 91, 075409 (2015)

    Article  ADS  Google Scholar 

  70. H. Nasari, M.S. Abrishamian, All-optical tunable notch filter by use of Kerr nonlinearity in the graphenemicroribbon array. J. Opt. Soc. Am. B 31, 1691 (2014)

    Article  ADS  Google Scholar 

  71. M. Gullans, D.E. Chang, F.H.L. Koppens, F.J. García de Abajo, M.D. Lukin, Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013)

    Article  ADS  Google Scholar 

  72. X. Yao, M. Tokman, A. Belyanin, Effcient nonlinear generation of THz plasmons in graphene and topological insulators. Phys. Rev. Lett. 112, 055501 (2014)

    Article  ADS  Google Scholar 

  73. A.V. Gorbach, Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A 87, 013830 (2013)

    Article  ADS  Google Scholar 

  74. J.D. Cox, F.J. García de Abajo, Plasmon-enhanced nonlinear wave mixing in nanostructured graphene. ACS Photonics 2, 306 (2015)

    Article  Google Scholar 

  75. X.-H. Wang, Finite Element Methods for Nonlinear Optical Waveguides, Advances in Nonlinear Optics, vol. 2 (Gordan and Breach Publishers, 1995)

    Google Scholar 

  76. B. Semnani, A.H. Majedi, S. Safavi-Naeini, Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. arXiv:1502.02203 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Christensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Christensen, T. (2017). Nonclassical Graphene Plasmonics. In: From Classical to Quantum Plasmonics in Three and Two Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48562-1_6

Download citation

Publish with us

Policies and ethics