Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We first review the necessary components of electrodynamics and establish a practical notion of optical excitations. Next, we specialize to plasmonic excitations, and discuss their classical features. Finally, we cover theoretical aspects of techniques that probe the properties of plasmons in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equations (2.1) collect the historical Faraday law (a), the Maxwell–Ampère law (b), and the electric and magnetic Gauss laws (c) and (d).

  2. 2.

    The Maxwell equations can in fact be written in just three equations, namely Eqs. (2.1a), (2.1b), (2.2) from which Eqs. (2.1c) and (2.1d) follow [2].

  3. 3.

    Anisotropy can be included in Eqs. (2.3) by considering tensorial forms of the response functions \(\varepsilon _{\textsc {b}}\) and \(\sigma \).

  4. 4.

    We define Fourier transform pairs in time and space:

    $$\begin{aligned} \begin{aligned} f(\omega )&\equiv \int f(t)\mathrm {e}^{ \mathrm {i} \omega t} \, \mathrm {d} {t},\\ g( \mathbf {k} )&\equiv \int g( \mathbf {r} )\mathrm {e}^{- \mathrm {i} \mathbf {k} \cdot \mathbf {r} } \, \mathrm {d} { \mathbf {r} }, \end{aligned} \qquad \qquad \qquad \qquad \begin{aligned} f(t)&\equiv \frac{1}{2\pi }\int f(\omega )\mathrm {e}^{- \mathrm {i} \omega t} \, \mathrm {d} {\omega },\\ g( \mathbf {r} )&\equiv \frac{1}{(2\pi )^3}\int g( \mathbf {k} )\mathrm {e}^{ \mathrm {i} \mathbf {k} \cdot \mathbf {r} } \, \mathrm {d} { \mathbf {k} }. \end{aligned} \end{aligned}$$
  5. 5.

    Equivalently, in the time-domain: \(\partial _t \tilde{ \mathbf {D} } \equiv \partial _t \mathbf {D} + \mathbf {J} _{\scriptscriptstyle \mathrm {ind}} \).

  6. 6.

    The optical excitations deduced from Eq. (2.7b) are not generally guaranteed to be bound excitations; such a distinction can be made by using an optical potential \(\Delta \varepsilon ( \mathbf {r} )\) relative to the background [3].

  7. 7.

    The equivalent real-space definition reading .

  8. 8.

    In the presence of material loss, or indeed even of radiation loss, the optical excitation frequencies are complex; the imaginary part provides the excitation’s inverse life-time.

  9. 9.

    Here assuming full isotropy and correspondingly scalar \(\varepsilon ( \mathbf {r} , \mathbf {r} ';\omega )\).

  10. 10.

    The specification is occasionally made in terms of the Wigner-Seitz radius \(r_s\) defined as the radius of a spherical volume containing on average one electron \(\tfrac{4\pi }{3} r_s^3 = 1/n_{0}\) [9].

  11. 11.

    When combined with a Drude model, such a model is typically referred to as a Lorentz–Drude model.

  12. 12.

    Not just metals but also strongly doped semiconductors are well described by a Drude model [17, 18]—even graphene, a semi-metal with nonparabolic dispersion, exhibits a (modified) Drude response, as we return to in Part II.

  13. 13.

    The full dispersion is obtained from the zeros of the Lindhard dielectric function \(\varepsilon _{\textsc {l}}(k,\omega ) = 1-V(k)\chi _0(k,\omega )\), with Coulomb interaction \(V(k)=e^2/\varepsilon _0 k^2\) and noninteracting density-density response \(\chi _0(k,\omega )\) given by products of fractions and logarithms of k [9, 13].

  14. 14.

    The TE and TM polarization are commonly also referenced as s- and p-polarization, respectively, indicating parallel and senkrecht (German; perpendicular) polarization relative to the plane of incidence.

  15. 15.

    The corresponding TE reflection coefficient is \(r_{\textsc {te}} = ( k_{\scriptscriptstyle \perp } ^+ - k_{\scriptscriptstyle \perp } ^-)/( k_{\scriptscriptstyle \perp } ^+ + k_{\scriptscriptstyle \perp } ^-)\).

  16. 16.

    The polariton-epithet indicates the mixing with the free polariton field in the dielectric medium, i.e. the inclusion of retardation. In the nonretarded limit it is omitted; the \( k_{\scriptscriptstyle \parallel } /k_0\rightarrow \infty \) solution of Eq. (2.17) is thus simply denoted the surface plasmon (SP) [23].

  17. 17.

    Back-bending is absent if \(\omega \) rather than \( k_{\scriptscriptstyle \parallel } \) is chosen complex [24, 25], in this case, the relevant decay involves times rather than lengths.

  18. 18.

    Equation (2.18) may be obtained by solving the Poisson equation \(\nabla \cdot [\varepsilon ( \mathbf {r} )\nabla \phi ( \mathbf {r} )] = 0\) for the potential \(\phi ( \mathbf {r} )\) via expansion in multipole solutions of the Laplace equation, matched so as to ensure continuity at the boundary.

  19. 19.

    The general sum rule, not restricted to specific choices of the dielectric or bound response, is \(\Delta (\omega _{-}) + \Delta (\omega _{+}) = 1\) with \(\Delta (\omega ) \equiv {\varepsilon ^{\scriptscriptstyle \text {d}} }/[\varepsilon ^{\scriptscriptstyle \text {d}} - \varepsilon ^{\scriptscriptstyle \text {m}} ( \omega )]\) for dielectric functions \(\varepsilon ^{\scriptscriptstyle \text {d}} \) and \(\varepsilon ^{\scriptscriptstyle \text {m}} (\omega )\) corresponding to the dielectric and metal regions, respectively [31]. This can readily be derived from the LRA-limit of Eq. (3.38a).

  20. 20.

    Unsurprisingly, the single-channel limit is ubiquitous also outside plasmonics, e.g. in atomic physics in the interaction between classical radiation and two-level systems [1].

  21. 21.

    As first noted by Rayleigh [56], the scaling \(\sigma _{\scriptscriptstyle \text {sca}} \sim \lambda ^{-4}\) qualitatively accounts for the color of the sky: light scattering off airborne molecules is strongest at short wavelengths, thus entailing a blue appearance.

  22. 22.

    A full discussion of the optical LDOS requires consideration of both electric and magnetic contributions [70]. The former, however, is arguably more important than the latter, at least in a nanophotonic context, since it relates directly with the properties of electric dipoles and thus real emitters.

  23. 23.

    The operator form of the dyadic Green function was noted in Sect. 2.1.2. Its real-space form is obtained by taking appropriate matrix elements , such that .

  24. 24.

    Decay enhancement (or quenching) is a cornerstone of cavity quantum electrodynamics, wherein it is known as the Purcell factor.

  25. 25.

    In evaluating Eq. (2.24) for practical systems it is often advantageous to make use of the following classical relation: \(\frac{\rho _{\hat{\mathbf {n}}}^{\textsc {e}}( \mathbf {r} ,\omega _{\scriptscriptstyle 12} )}{\rho _{\scriptscriptstyle 0} ^{\textsc {e}}(\omega _{\scriptscriptstyle 12} )} = \frac{6\pi \varepsilon _{\scriptscriptstyle 0} \text {Im}[\mathbf {p}_{\scriptscriptstyle \text {c}} ^* \cdot \mathbf {E} ( \mathbf {r} )]}{|\mathbf {p}_{\scriptscriptstyle \text {c}} |^2 k_0^3}\) with \( \mathbf {E} \) denoting the total field due to a classical dipole \(\mathbf {p}_{\scriptscriptstyle \text {c}} \) at point \( \mathbf {r} \), with evaluation at frequency \(\omega _{\scriptscriptstyle 12} \) understood [11].

  26. 26.

    Implicit in Eq. (2.26) is the assumption that the electron’s path \( \mathbf {r} _{\scriptscriptstyle \text {e}} (t)\) is not appreciably modified by the interaction with the induced field, i.e. an assumption of linear response, justified by the enormous differences in total (hundreds of keV) and lost (few eV) energy; this is sometimes termed the no-recoil approximation.

  27. 27.

    The identification with a generalized LDOS requires replacing by , with vacuum contribution . The replacement makes no change to \(\Gamma (\omega )\) because the contribution vanishes when integrated, reflecting the fact that the electron does not incur loss on itself in vacuum.

References

  1. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, 1999)

    Google Scholar 

  2. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd edn. Series on Electromagnetic Waves (IEEE Press, 1993)

    Google Scholar 

  3. M. Wubs, L.G. Suttorp, A. Lagendijk, Spontaneous-emission rates infinite photonic crystals of plane scatterers. Phys. Rev. E 69, 016616 (2004)

    Article  ADS  Google Scholar 

  4. J.D. Joannopoulos, S.E. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, 2008)

    Google Scholar 

  5. F. Wijnands, J.B. Pendry, F.J. García-Vidal, P.M. Bell, P.J. Roberts, L. MartínMoreno, Green’s functions for Maxwell’s equations: application to spontaneous emission. Opt. Quantum Electron. 29, 199 (1997)

    Article  Google Scholar 

  6. K.M. Lee, P.T. Leung, K.M. Pang, Dyadic formulation of morphology-dependent resonances. I. Completeness relation. J. Opt. Soc. Am. B 16, 1409 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. R.-G. Ge, P.T. Kristensen, J.F. Young, S. Hughes, Quasinormal mode approach to modelling light emission and propagation in nanoplasmonics. New J. Phys. 16, 113048 (2014)

    Article  ADS  Google Scholar 

  8. P.J. Feibelman, Surface electromagnetic fields. Prog. Surf. Sci. 12, 287 (1982)

    Article  ADS  Google Scholar 

  9. H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, 2004)

    Google Scholar 

  10. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

    Google Scholar 

  11. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012)

    Google Scholar 

  12. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, 1976)

    Google Scholar 

  13. G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, 2014)

    Google Scholar 

  14. P.B. Johnson, R.W. Christy, Optical constants of the noblemetals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  15. A.D. Rakić, Algorithm for the determination of intrinsic optical constants of metal flims: application to aluminum. Appl. Opt. 34, 4755 (1995)

    Article  ADS  Google Scholar 

  16. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic flims for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998)

    Article  ADS  Google Scholar 

  17. J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface Plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361 (2011)

    Article  ADS  Google Scholar 

  18. A.M. Schimpf, N. Thakkar, C.E. Gunthardt, D.J. Masiello, D.R. Gamelin, Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. ACS Nano 8, 1065 (2014)

    Article  Google Scholar 

  19. T. Christensen, W. Yan, S. Raza, A.-P. Jauho, N.A. Mortensen, M. Wubs, Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 8, 1745 (2014)

    Article  Google Scholar 

  20. G. Ruthemann, Discrete energy loss of fast electrons in passage through thin-flims, Ann. Phys. 437, 113 (1948), originally ‘Diskrete Energieverluste mittelschneller Elektronen beim Durchgang durch dünne Folien’

    Google Scholar 

  21. L. Marton, J.A. Simpson, H.A. Fowler, N. Swanson, Plural scattering of 20- keV electrons in aluminum. Phys. Rev. 126, 182 (1962)

    Article  ADS  Google Scholar 

  22. C.H. Chen, Plasmon dispersion in single-crystal magnesium. J. Phys. C: Solid State Phys. 9, L321 (1976)

    Article  ADS  Google Scholar 

  23. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1 (2007)

    Article  ADS  Google Scholar 

  24. R.W. Alexander, G.S. Kovener, R.J. Bell, Dispersion curves for surface electromagnetic waves with damping. Phys. Rev. Lett. 32, 154 (1974)

    Article  ADS  Google Scholar 

  25. A. Archambault, A, T.V. Teperik, F. Marquier, J.-J. Greffet, Surface plasmon Fourier optics. Phys. Rev. B 79, 195414 (2009)

    Article  ADS  Google Scholar 

  26. R. Fuchs, F. Claro, Multipolar response of small metallic spheres: nonlocal theory. Phys. Rev. B 35, 3722 (1987)

    Article  ADS  Google Scholar 

  27. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J. García de Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792 (2008)

    Article  Google Scholar 

  28. T. Christensen, A.-P. Jauho, M. Wubs, N.A. Mortensen, Localized plasmons in graphene-coated nanospheres. Phys. Rev. B 91, 125414 (2015)

    Article  ADS  Google Scholar 

  29. C.F. Bohren, How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323 (1983)

    Article  ADS  Google Scholar 

  30. R.M. Cole, J.J. Baumberg, F.J. García de Abajo, S. Mahajan, M. Abdelsalam, P.N. Bartlett, Understanding plasmons in nanoscale voids. Nano Lett. 7, 2094 (2007)

    Article  ADS  Google Scholar 

  31. S.P. Apell, P.M. Echenique, R.H. Ritchie, Sum rules for surface plasmon frequencies. Ultramicroscopy 65, 53 (1996)

    Article  Google Scholar 

  32. Z. Ruan, S. Fan, Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 105, 013901 (2010)

    Article  ADS  Google Scholar 

  33. C.L.C. Smith, N. Stenger, A. Kristensen, N.A. Mortensen, S.I. Bozhevolnyi, Gap and channeled plasmons in tapered grooves: a review. Nanoscale 7, 9355 (2015)

    Article  ADS  Google Scholar 

  34. F.J. García de Abajo, Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267 (2007)

    Article  ADS  Google Scholar 

  35. A. Rusina, M. Durach, M.I. Stockman, Theory of spoof plasmons in real metals. Appl. Phys. A 100, 375 (2010)

    Article  ADS  Google Scholar 

  36. R. Ruppin, Surface modes of two spheres. Phys. Rev. B 26, 3440, 3441 (1982)

    Google Scholar 

  37. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  38. I. Romero, J. Aizpurua, G.W. Bryant, F.J. García de Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988 (2006)

    Article  ADS  Google Scholar 

  39. A.I. Fernández-Domínguez, A. Wiener, F.J. García-Vidal, S.A. Maier, J.B. Pendry, Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett. 108, 106802 (2012)

    Article  ADS  Google Scholar 

  40. G. Toscano, S. Raza, A.-P. Jauho, N.A. Mortensen, M. Wubs, Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response. Opt. Express 20, 4176 (2012)

    Article  ADS  Google Scholar 

  41. R. Esteban, A.G. Borisov, P. Nordlander, J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012)

    Article  ADS  Google Scholar 

  42. T.V. Teperik, P. Nordlander, J. Aizpurua, A.G. Borisov, Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys. Rev. Lett. 110, 263901 (2013)

    Article  ADS  Google Scholar 

  43. K. Andersen, K. Jensen, N.A. Mortensen, K.S. Thygesen, Visualizing hybridized quantum plasmons in coupled nanowires: from classical to tunneling regime. Phys. Rev. B 87, 235433 (2013)

    Article  ADS  Google Scholar 

  44. N.A. Mortensen, S. Raza, M. Wubs, S.I. Bozhevolnyi, A generalized nonlocal optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014)

    ADS  Google Scholar 

  45. S. Raza, M. Wubs, S.I. Bozhevolnyi, N.A. Mortensen, Nonlocal study of ultimate plasmon hybridization. Opt. Lett. 40, 839 (2015)

    Article  ADS  Google Scholar 

  46. U. Leonhardt, T.G. Philbin, Transformation optics and the geometry of light. Prog. Opt. 53, 69 (2009)

    Article  Google Scholar 

  47. A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, Collection and concentration of light by touching spheres: a transformation optics approach. Phys. Rev. Lett. 105, 266807 (2010)

    Article  ADS  Google Scholar 

  48. A.V. Lavrinenko, J. Lægsgaard, N. Gregersen, F. Schmidt, T. Søndergaard, Numerical Methods in Photonics, 1st edn. (CRC Press, 2014)

    Google Scholar 

  49. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech Houce Inc., 2005)

    Google Scholar 

  50. J.-M. Jin, The Finite Element Method in Electromagnetics, 3rd edn. (Wiley-IEEE Press, 2014)

    Google Scholar 

  51. T. Søndergaard, Modeling of plasmonic nanostructures: Green’s function integral equation methods. Phys. Status Solidi B 244, 3448 (2007)

    Article  ADS  Google Scholar 

  52. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. JOSA A 11, 1491 (1994)

    Article  ADS  Google Scholar 

  53. F.J. García de Abajo, A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002)

    Article  ADS  Google Scholar 

  54. U. Hohenester, A. Trügler, MNPBEM–a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370 (2012)

    Article  ADS  Google Scholar 

  55. U. Hohenester, Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 185, 1177 (2014)

    Article  ADS  Google Scholar 

  56. J.W. Strutt, (Lord Rayleigh), On the light from the sky, its polarization and colour. Philos. Mag. 37, 388 (1871)

    Google Scholar 

  57. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  58. R. Carminati, J.-J. Greffet, C. Henkel, J.M. Vigoureux, Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle. Opt. Commun. 261, 368 (2006)

    Article  ADS  Google Scholar 

  59. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981)

    Google Scholar 

  60. J.-J. Greffet, R. Carminati, Image formation in near-field optics. Prog. Surf. Sci. 56, 133 (1997)

    Article  ADS  Google Scholar 

  61. J.-C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, J.P. Goudonnet, Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys. Rev. B 64, 045411 (2001)

    Article  ADS  Google Scholar 

  62. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131 (2005)

    Article  ADS  Google Scholar 

  63. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508 (2006)

    Article  ADS  Google Scholar 

  64. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A.Z. Elorza, N. Camara, F.J. García de Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77 (2012)

    ADS  Google Scholar 

  65. Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro, Neto, C.N. Lau, F. Keilmann, and D.N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82 (2012)

    ADS  Google Scholar 

  66. J. Chen, M.L. Nesterov, A.Y. Nikitin, S. Thongrattanasiri, P. Alonso-González, T.M. Slipchenko, F. Speck, O. Markus, T. Seyller, I. Crassee, F.H.L. Koppens, L. Martin-Moreno, F.J. García de Abajo, A. Kuzmenko, R. Hillenbrand, Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 13, 6210 (2003)

    Article  ADS  Google Scholar 

  67. P. Alonso-González, A.Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F.H.L. Koppens, A. Zurutuza, F. Casanova, L.E. Hueso, R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369 (2014)

    Article  ADS  Google Scholar 

  68. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  69. K.A. Willets, Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43, 3854 (2014)

    Article  Google Scholar 

  70. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003)

    Article  ADS  Google Scholar 

  71. V. Weisskopf, E. Wigner, Calculation of the natural linewidth in the Dirac theory of light, Z. Phys. 63, 54 (1930), originally ‘Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie’

    Google Scholar 

  72. K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1–2, 693 (1970)

    Article  Google Scholar 

  73. E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A. JavierMuñoz, W.J. Parak, Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 5, 585 (2005)

    Article  ADS  Google Scholar 

  74. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of singlemolecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  75. R.F. Egerton, Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009)

    Article  ADS  Google Scholar 

  76. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010)

    Article  ADS  Google Scholar 

  77. M. Kociak, F.J. García de Abajo, Nanoscale mapping of plasmons, photons, and excitons. MRS Bull. 37, 39 (2012)

    Article  Google Scholar 

  78. F.J. García de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008)

    Article  ADS  Google Scholar 

  79. U. Hohenester, H. Ditlbacher, J.R. Krenn, Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 106801 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Christensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Christensen, T. (2017). Fundamentals of Plasmonics. In: From Classical to Quantum Plasmonics in Three and Two Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48562-1_2

Download citation

Publish with us

Policies and ethics