Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 999 Accesses

Abstract

Plasmons are collective excitations in the free-electron plasma of conductive materials, such as e.g. noble metals. Classically, they are characterized by an oscillation of the free-electron plasma, sustained by inter-electronic interaction in a positive ionic background. The interaction is mediated in the nonretarded case by the Coulomb force, and in a full electrodynamic view, by the Maxwell equations. It is a testament to their remarkable potential, that their unique attributes have been exploited in numerous cases long before their theoretical description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a while, following the 1929 classical description by Tonks and Langmuir [3], plasmons were known as Langmuir waves.

  2. 2.

    The 1998 observations of enhanced transmission through subwavelength hole-arrays [20], constitutes an oft-noted example of such a galvanizing and stimulating event.

  3. 3.

    The intersection of these extensions, i.e. simultaneous accounting of optical and electronic quantization, poses a formidable challenge, which, however, has seen progress recently [27, 28].

  4. 4.

    For brevity, we do not explicitly indicate the magnitude of \(\mathbf {u}( \mathbf {r} ,t)\) because it drops out in the final analysis—implicitly, however, we assume it to be sufficiently small so as to justify a perturbative analysis.

  5. 5.

    We emphasize that it is here, at the accounting of the field induced by the electrons’ displacement, that the Coulomb interaction is included. That it is the Poisson equation which is invoked is only a semantic change; it’s equivalence to a Coulomb interaction \(e^2/| \mathbf {r} - \mathbf {r} '|\) is readily discerned by considering its solution in the case of a single charge \(\delta \rho ( \mathbf {r} ) = -e\delta ( \mathbf {r} )\).

  6. 6.

    Using the integral identities \(\int _{-\infty }^\infty \mathrm {e}^{ \mathrm {i} kx}(x^2+y^2+z^2)^{-1/2} \, \mathrm {d} x = 2K_0[k(y^2+z^2)^{1/2}]\) and \(\int _0^\infty K_0[k(y^2+z^2)^{1/2}] \, \mathrm {d} {y} = \pi \mathrm {e}^{-k|z|}/2k\) [52] or the differential identity \(\partial _z^2\mathrm {e}^{-k|z|} = -2k\delta (z) +k^2\mathrm {e}^{-k|z|}\) in the Coulomb or Poisson case, respectively.

  7. 7.

    Of course, a basic sort of size- and momentum-dependence has been omitted: that due to retardation, which produces such a dependence in the large-scale and low-momentum regimes; our present efforts, however, are concerned with the opposite limits (and is restricted thereto as well, owing to its quasistatic outlook).

References

  1. A. Ruivo, C. Gomes, A. Lima, M.L. Botelho, R. Melo, A. Belchior, A.P. de Matos, Gold nanoparticles in ancient and contemporary ruby glass. C. R. Phys. 9, 649 (2008)

    Google Scholar 

  2. P. Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109 (2009)

    Article  Google Scholar 

  3. L. Tonks, I. Langmuir, Oscillations in ionized gases. Phys. Rev. 33, 195 (1929)

    Article  ADS  MATH  Google Scholar 

  4. G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25, 377 (1908), originally ‘Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen’

    Google Scholar 

  5. H. Siedentopf, R. Zsigmondy, On visualization and size-determination of ultra-microscopic particles, with particular applications to gold ruby glasses. Ann. Phys. 315, 1 (1902), originally ‘Uber Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser’

    Google Scholar 

  6. T. Mappes, N. Jahr, A. Csaki, N. Vogler, J. Popp, W. Fritzsche, The invention of immersion ultramicroscopy in 1912–the birth of nanotechnology? Angew. Chem. 51, 11208 (2012)

    Article  Google Scholar 

  7. D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1 (2007)

    Article  ADS  Google Scholar 

  10. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

    Google Scholar 

  11. A. Baev, P.N. Prasad, H. Ågren, M. Samoć, M. Wegener, Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep. 594, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.I. Stockman, Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39 (2011)

    Article  Google Scholar 

  13. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029 (2011)

    Article  ADS  Google Scholar 

  14. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)

    Article  ADS  Google Scholar 

  15. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83 (2010)

    Article  ADS  Google Scholar 

  16. C.F. Bohren, How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323 (1983)

    Article  ADS  Google Scholar 

  17. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  18. N. Engheta, R.W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations (Wiley-IEEE Press, 2006)

    Google Scholar 

  19. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83 (2011)

    Article  ADS  Google Scholar 

  20. T. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  21. J. Henzie, J. Lee, M.H. Lee, W. Hasan, T.W. Odom, Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60, 147 (2009)

    Article  ADS  Google Scholar 

  22. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010)

    Article  ADS  Google Scholar 

  23. X. Chen, H.-R. Park, M. Pelton, X. Piao, N.C. Lindquist, H. Im, Y.J. Kim, J.S. Ahn, N. Park, D.-S. Kim, S.-H. Oh, Atomic layer lithography of waferscale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013)

    ADS  Google Scholar 

  24. J. Kern, S. Grossmann, T. Tarakina, N.V. Hackel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J.C. Prangsma, B. Hecht, Atomic-scale confinement of resonant optical fields. Nano Lett. 12, 5504 (2012)

    Article  ADS  Google Scholar 

  25. J.A. Scholl, A.L. Koh, J.A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421 (2012)

    Article  ADS  Google Scholar 

  26. S. Raza, N. Stenger, S. Kadkhodazadeh, S.V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, N.A. Mortensen, Blueshift of the surface Plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2, 131 (2013)

    Article  ADS  Google Scholar 

  27. I.V. Tokatly, Time-dependent density functional theory formany-electron systems interacting with cavity photons. Phys. Rev. Lett. 110, 233001 (2013)

    Article  ADS  Google Scholar 

  28. C. Pellegrini, J. Flick, I.V. Tokatly, H. Appel, A. Rubio, Optimized effective potential for quantum electrodynamical time-dependent density functional theory. Phys. Rev. Lett. 115, 093001 (2015)

    Article  ADS  Google Scholar 

  29. M.S. Tame, K.R. McEnery, S.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329 (2013)

    Article  Google Scholar 

  30. S. Kumar, N.I. Møller, A. Huck, U.L. Andersen, Generation and controlled routing of single plasmons on a chip. Nano Lett. 14, 663 (2014)

    Article  ADS  Google Scholar 

  31. C.C. Gerry, P.L. Knight, Introductory Quantum Optics, 1st edn. (Cambridge University Press, 2005)

    Google Scholar 

  32. H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, 2004)

    Google Scholar 

  33. T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  34. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  35. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  36. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  37. M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  38. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  39. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370 (2011)

    Article  ADS  Google Scholar 

  40. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6, 749 (2012)

    Article  ADS  Google Scholar 

  41. M. Jablan, M. Soljačić, H. Buljan, Plasmons in graphene: fundamental properties and potential applications. Proc. IEEE 101, 1689 (2013)

    Article  Google Scholar 

  42. Y.V. Bludov, A. Ferreira, N.M.R. Peres, M.I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B 27, 1341001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 8, 899 (2014)

    Article  ADS  Google Scholar 

  44. F.J. García de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photonics 1, 135 (2014)

    Article  Google Scholar 

  45. T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086 (2014)

    Article  Google Scholar 

  46. T. Stauber, Plasmonics in Dirac systems: from graphene to topological insulators. J. Phys.: Condens. Matter 26, 123201 (2014)

    Google Scholar 

  47. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, 1976)

    Google Scholar 

  48. G.D. Mahan, Condensed Matter in a Nutshell (Princeton University Press, 2011)

    Google Scholar 

  49. G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, 2014)

    Google Scholar 

  50. P. Drude, On the electron theory of metals. Ann. Phys. 306, 566 (1900), originally ‘Zur Elektronentheorie der Metalle’

    Google Scholar 

  51. A. Sommerfeld, On the electron theory of metals described by Fermi statistics. Z. Phys. 47, 1 (1928), originally ‘Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik’

    Google Scholar 

  52. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Elsevier Academic Press, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Christensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Christensen, T. (2017). Introduction. In: From Classical to Quantum Plasmonics in Three and Two Dimensions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48562-1_1

Download citation

Publish with us

Policies and ethics