Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1007 Accesses

Abstract

In this chapter we theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a quantum dot (QD). We first derive a master equation based framework for electron transport in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in the QD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For finite polarization the initial covariance matrix has been determined heuristically from the dark state condition \(\langle A^{-}A^{+}\rangle =0\) in the homogeneous limit.

  2. 2.

    This limit is realized if strong nuclear dephasing processes prevent the coherence build-up of the SR evolution.

References

  1. T. Brandes, Coherent and collective quantum optical effects in mesoscopic systems. Phys. Reports 408(5–6), 315 (2005)

    Article  ADS  Google Scholar 

  2. D.D. Awschalom, N. Samarath, D. Loss, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002)

    Book  Google Scholar 

  3. D.Y. Sharvin, Y.V. Sharvin, Magnetic-flux quantization in a cylindrical film of a normal metal. JETP Lett. 34(7), 272 (1981)

    ADS  Google Scholar 

  4. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60(9), 848 (1988)

    Article  ADS  Google Scholar 

  5. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C Solid State Phys. 21(8), L209 (2000)

    Article  Google Scholar 

  6. Y.V. Nazarov, Y.M. Blanter, Quantum Transport (Cambridge University Press, Cambrigde, 2009)

    Google Scholar 

  7. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  8. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  9. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  10. A.C. Johnson, J.R. Petta, J.M. Taylor, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Triplet-singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925 (2005)

    Article  ADS  Google Scholar 

  11. O.N. Jouravlev, Y.V. Nazarov, Electron transport in a double quantum dot governed by a nuclear magnetic field. Phys. Rev. Lett. 96, 176804 (2006)

    Article  ADS  Google Scholar 

  12. J. Baugh, Y. Kitamura, K. Ono, S. Tarucha, Large nuclear Overhauser fields detected in vertically-coupled double quantum dots. Phys. Rev. Lett. 99, 096804 (2007)

    Article  ADS  Google Scholar 

  13. J.R. Petta, J.M. Taylor, A.C. Johnson, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008)

    Article  ADS  Google Scholar 

  14. J. Iñarrea, G. Platero, A.H. MacDonald, Electronic transport through a double quantum dot in the spin-blockade regime: theoretical models. Phys. Rev. B 76(8), 085329 (2007)

    Article  ADS  Google Scholar 

  15. F.H.L. Koppens, J.A. Folk, J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, I.T. Vink, H.-P. Tranitz, W. Wegscheider, L.P. Kouwenhoven, L.M.K. Vandersypen, Control and detection of singlet-triplet mixing in a random nuclear field. Science 309, 1346 (2005)

    Article  ADS  Google Scholar 

  16. K. Ono, S. Tarucha, Nuclear-spin-induced oscillatory current in spin-blockaded quantum dots. Phys. Rev. Lett. 92, 256803 (2004)

    Article  ADS  Google Scholar 

  17. A. Pfund, I. Shorubalko, K. Ensslin, R. Leturcq, Suppression of spin relaxation in an in as nanowire double quantum dot. Phys. Rev. Lett. 99(3), 036801 (2007)

    Article  ADS  Google Scholar 

  18. T. Kobayashi, K. Hitachi, S. Sasaki, K. Muraki, Observation of hysteretic transport due to dynamic nuclear spin polarization in a GaAs lateral double quantum dot. Phys. Rev. Lett. 107(21), 216802 (2011)

    Article  ADS  Google Scholar 

  19. K. Ono, D.G. Austing, Y. Tokura, S. Tarucha, Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297(5585), 1313 (2002)

    Article  ADS  Google Scholar 

  20. M.S. Rudner, L.S. Levitov, Self-polarization and cooling of spins in quantum dots. Phys. Rev. Lett. 99, 036602 (2007)

    Article  ADS  Google Scholar 

  21. M. Eto, T. Ashiwa, M. Murata, Current-induced entanglement of nuclear spins in quantum dots. J. Phys. Soc. Jpn. 73(2), 307 (2004)

    Article  ADS  MATH  Google Scholar 

  22. H. Christ, J.I. Cirac, G. Giedke, Quantum description of nuclear spin cooling in a quantum dot. Phys. Rev. B 75, 155324 (2007)

    Article  ADS  Google Scholar 

  23. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  24. M. Gross, S. Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Reports 93, 301 (1982)

    Article  ADS  Google Scholar 

  25. P. Recher, E.V. Sukhorukov, D. Loss, Quantum dot as spin filter and spin memory. Phys. Rev. Lett. 85(9), 1962 (2000)

    Article  ADS  Google Scholar 

  26. R. Hanson, L.M.K. Vandersypen, L.H.W. van Beveren, J.M. Elzerman, I.T. Vink, L.P. Kouwenhoven, Semiconductor few-electron quantum dot operated as a bipolar spin filter. Phys. Rev. B 70(24), 241304 (2004)

    Article  ADS  Google Scholar 

  27. E.M. Kessler, S. Yelin, M.D. Lukin, J.I. Cirac, G. Giedke, Optical superradiance from nuclear spin environment of single photon emitters. Phys. Rev. Lett. 104, 143601 (2010)

    Article  ADS  Google Scholar 

  28. J. Schliemann, A. Khaetskii, D. Loss, Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei. J. Phys. Condens. Matter 15(50), R1809 (2003)

    Article  ADS  Google Scholar 

  29. H. Bruus, K. Flensberg, Many-body Quantum Theory in Condensed Matter Physics (Oxford University Press, New York, 2006)

    Google Scholar 

  30. Y. Yamamoto, A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999)

    Google Scholar 

  31. S. Welack, M. Esposito, U. Harbola, S. Mukamel, Interference effects in the counting statistics of electron transfers through a double quantum dot. Phys. Rev. B 77(19), 195315 (2008)

    Article  ADS  Google Scholar 

  32. J.M. Taylor, J.R. Petta, A.C. Johnson, A. Yacoby, C.M. Marcus, M.D. Lukin, Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007)

    Article  ADS  Google Scholar 

  33. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992)

    Google Scholar 

  34. C. Timm, Private Communication (2011)

    Google Scholar 

  35. C. Timm, Tunneling through molecules and quantum dots: master-equation approaches. Phys. Rev. B 77(19), 195416 (2008)

    Article  ADS  Google Scholar 

  36. U. Harbola, M. Esposito, S. Mukamel, Quantum master equation for electron transport through quantum dots and single molecules. Phys. Rev. B 74(23), 235309 (2006)

    Article  ADS  Google Scholar 

  37. H.-A. Engel, D. Loss, Single-spin dynamics and decoherence in a quantum dot via charge transport. Phys. Rev. B 65(19), 195321 (2002)

    Google Scholar 

  38. N. Zhao, J.-L. Zhu, R.-B. Liu, C.P. Sun, Quantum noise theory for quantum transport through nanostructures. New J. Phys. 13(1), 013005 (2011)

    Article  ADS  Google Scholar 

  39. S.A. Gurvitz, Y.S. Prager, Microscopic derivation of rate equations for quantum transport. Phys. Rev. B 53(23), 15932 (1996)

    Google Scholar 

  40. S.A. Gurvitz, Rate equations for quantum transport in multidot systems. Phys. Rev. B 57(11), 6602 (1998)

    Article  ADS  Google Scholar 

  41. H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 \(\upmu \)s. Nat. Phys. 7(2), 109 (2010)

    Article  Google Scholar 

  42. G.S. Agarwal, Master-equation approach to spontaneous emission. III. Many-body aspects of emission from two-level atoms and the effect of inhomogeneous broadening. Phys. Rev. A 4, 1791 (1971)

    Google Scholar 

  43. C. Leonardi, A. Vaglica, Superradiance and inhomogeneous broadening. II: spontaneous emission by many slightly detuned sources. Nuovo Cimento B Serie 67, 256 (1982)

    Google Scholar 

  44. V.V. Temnov, U. Woggon, Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. Phys. Rev. Lett. 95, 243602 (2005)

    Article  ADS  Google Scholar 

  45. D.A. Bagrets, Y.V. Nazarov, Full counting statistics of charge transfer in Coulomb blockade systems. Phys. Rev. B 67(8), 085316 (2003)

    Google Scholar 

  46. M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. C. Emary, C. Pöltl, A. Carmele, J. Kabuss, A. Knorr, T. Brandes, Bunching and antibunching in electronic transport. Phys. Rev. B 85(16), 165417 (2012)

    Article  ADS  Google Scholar 

  48. L.D. Contreras-Pulido, R. Aguado, Shot noise spectrum of artificial single-molecule magnets: measuring spin relaxation times via the Dicke effect. Phys. Rev. B 81(16), 161309(R) (2010)

    Google Scholar 

  49. H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  50. R. Hanson, B. Witkamp, L.M.K. Vandersypen, L.H.W. van Beveren, J.M. Elzerman, L.P. Kouwenhoven, Zeeman energy and spin relaxation in a one-electron quantum dot. Phys. Rev. Lett. 91(19), 196802 (2003)

    Article  ADS  Google Scholar 

  51. D. Paget, Optical detection of NMR in high-purity GaAs: direct study of the relaxation of nuclei close to shallow donors. Phys. Rev. B 25, 4444 (1982)

    Article  ADS  Google Scholar 

  52. T. Ota, G. Yusa, N. Kumada, S. Miyashita, T. Fujisawa, Y. Hirayama, Decoherence of nuclear spins due to direct dipole-dipole interactions probed by resistively detected nuclear magnetic resonance. Appl. Phys. Lett. 91, 193101 (2007)

    Article  ADS  Google Scholar 

  53. R. Takahashi, K. Kono, S. Tarucha, K. Ono, Voltage-selective bi-directional polarization and coherent rotation of nuclear spins in quantum dots. Phys. Rev. Lett. 107, 026602 (2011)

    Article  ADS  Google Scholar 

  54. H.J. Carmichael, Analytical and numerical results for the steady state in cooperative resonance fluorescence. J. Phys. B Atom. Mol. Phys. 13(18), 3551 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Morrison, A.S. Parkins, Collective spin systems in dispersive optical cavity-QED: quantum phase transitions and entanglement. Phys. Rev. A 77(4), 043810 (2008)

    Google Scholar 

  56. E.M. Kessler, G. Giedke, A. Imamoglu, S.F. Yelin, M.D. Lukin, J.I. Cirac, Dissipative phase transition in a central spin system. Phys. Rev. A 86(1), 012116 (2012)

    Google Scholar 

  57. C.-H. Chung, K. Le Hur, M. Vojta, P. Wölfle, Nonequilibrium transport at a dissipative quantum phase transition. Phys. Rev. Lett. 102, 216803 (2009)

    Article  ADS  Google Scholar 

  58. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  59. M.S. Rudner, L.S. Levitov, Phase transitions in dissipative quantum transport and mesoscopic nuclear spin pumping. Phys. Rev. B 82, 155418 (2010)

    Google Scholar 

  60. L. Borda, G. Zarand, D. Goldhaber-Gordon, Dissipative quantum phase transition in a quantum dot. arXiv:cond-mat/0602019 (2006)

  61. J.I. Cirac, R. Blatt, P. Zoller, W.D. Phillips, Laser cooling of trapped ions in a standing wave. Phys. Rev. A 46(5), 2668 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. A. Schütz .

2.9 Appendix to Chap. 2

2.9 Appendix to Chap. 2

2.1.1 2.9.1 Microscopic Derivation of the Master Equation

In this Appendix we provide some details regarding the derivation of the master equations as stated in Eqs. (2.2) and (2.30). It comprises the effect of the HF dynamics in the memory kernel of Eq. (2.13) and the subsequent approximation of independent rates of variation.

In the following, we will show that it is self-consistent to neglect the effect of the HF dynamics \(\mathcal {L}_{1}\left( t\right) \) in the memory-kernel of Eq. (2.13) provided that the bath correlation time \(\tau _{c}\) is short compared to the Rabi flips produced by the HF dynamics. This needs to be addressed as cooperative effects potentially drive the system from a weakly coupled into a strongly coupled regime. First, we reiterate the Schwinger-Dyson identity in Eq. (2.14) as an infinite sum over time-ordered nested commutators

$$\begin{aligned} e^{-i\left( \mathcal {L}_{0}+\mathcal {L}_{1}\right) \tau }=e^{-i\mathcal {L}_{0}\tau }\sum _{n=0}^{\infty }\left( -i\right) ^{n}\int _{0}^{\tau }d\tau _{1}\int _{0}^{\tau _{1}}d\tau _{2}\dots \int _{0}^{\tau _{n-1}}d\tau _{n}\,\tilde{\mathcal {L}}_{1}\left( \tau _{1}\right) \tilde{\mathcal {L}}_{1}\left( \tau _{2}\right) \dots \tilde{\mathcal {L}}_{1}\left( \tau _{n}\right) ,\end{aligned}$$
(2.49)

where for any operator X

$$\begin{aligned} \tilde{\mathcal {L}}_{1}\left( \tau \right) X=e^{i\mathcal {L}_{0}\tau }\mathcal {L}_{1}e^{-i\mathcal {L}_{0}\tau }X=\left[ e^{iH_{0}\tau }H_{1}e^{-iH_{0}\tau },X\right] =\left[ \tilde{H}_{1}\left( \tau \right) ,X\right] .\end{aligned}$$
(2.50)

More explicitly, up to second order Eq. (2.49) is equivalent to

$$\begin{aligned} e^{-i\left( \mathcal {L}_{0}\,+\,\mathcal {L}_{1}\right) \tau }X&= e^{-i\mathcal {L}_{0}\tau }X-ie^{-i\mathcal {L}_{0}\tau }\int _{0}^{\tau }d\tau _{1}\left[ \tilde{H}_{1}\left( \tau _{1}\right) ,X\right] \nonumber \\&-e^{-i\mathcal {L}_{0}\tau }\int _{0}^{\tau }d\tau _{1}\int _{0}^{\tau _{1}}d\tau _{2}\left[ \tilde{H}_{1}\left( \tau _{1}\right) ,\left[ \tilde{H}_{1}\left( \tau _{2}\right) ,X\right] \right] +\cdots \end{aligned}$$
(2.51)

Note that the time-dependence of \(\tilde{H}_{1}\left( \tau \right) \) is simply given by

$$\begin{aligned} \tilde{H}_{1}\left( \tau \right) =e^{i\omega \tau }H_{+}+e^{-i\omega \tau }H_{-}+H_{\Delta \mathrm {OH}},\,\,\,\,\,\,\,\,\,\, H_{\pm }=\frac{g}{2}S^{\pm }A^{\mp },\end{aligned}$$
(2.52)

where the effective Zeeman splitting \(\omega =\omega _{0}+g\left\langle A^{z}\right\rangle _{t}\) is time-dependent. Accordingly, we define \(\tilde{\mathcal {L}}_{1}\left( \tau \right) =\tilde{\mathcal {L}}_{+}\left( \tau \right) \,+\,\tilde{\mathcal {L}}_{-}\left( \tau \right) \,+\,\tilde{\mathcal {L}}_{\Delta \mathrm {OH}}\left( \tau \right) =e^{i\omega \tau }\mathcal {L}_{+}\,+\,e^{-i\omega \tau }\mathcal {L}_{-}\,+\,\mathcal {L}_{\Delta \mathrm {OH}},\) where \(\mathcal {L}_{x}\cdot =\left[ H_{x},\cdot \right] \) for \(x=\pm ,\Delta \mathrm {OH}\). In the next steps, we will explicitly evaluate the first two contributions to the memory kernel that go beyond \(n=0\) and then generalize our findings to any order n of the Schwinger-Dyson series.

2.1.1.1 First order correction

The first order contribution \(n=1\) in Eq. (2.13) is given by

$$\begin{aligned} \Xi ^{\left( 1\right) }=i\int _{0}^{t}d\tau \int _{0}^{\tau }d\tau _{1}\mathsf {Tr_{B}}\left( \mathcal {L}_{T}e^{-i\mathcal {L}_{0}\tau }\left[ \tilde{H}_{1}\left( \tau _{1}\right) ,X\right] \right) .\end{aligned}$$
(2.53)

Performing the integration in \(\tau _{1}\) leads to

$$\begin{aligned} \Xi ^{\left( 1\right) }= & {} \int _{0}^{t}d\tau \left\{ \frac{g}{2\omega }\left( 1-e^{-i\omega \tau }\right) \mathsf {Tr_{B}}\left( \mathcal {L}_{T}\left[ S^{+}A^{-},\tilde{X}_{\tau }\right] \right) \right. \nonumber \\&+\,\frac{g}{2\omega }\left( e^{i\omega \tau }-1\right) \mathsf {Tr_{B}}\left( \mathcal {L}_{T}\left[ S^{-}A^{+},\tilde{X}_{\tau }\right] \right) \nonumber \\&\left. +\,ig\tau \mathsf {Tr_{B}}\left( \mathcal {L}_{T}\left[ \left( A^{z}-\left\langle A^{z}\right\rangle _{t}\right) S^{z},\tilde{X}_{\tau }\right] \right) \right\} \end{aligned}$$
(2.54)

where, for notational convenience, we introduced the operators \(X=\mathcal {L}_{T}\rho _{S}\left( t-\tau \right) \rho _{B}^{0}\) and \(\tilde{X}_{\tau }=e^{-iH_{0}\tau }\left[ H_{T},\rho _{S}\left( t-\tau \right) \rho _{B}^{0}\right] e^{iH_{0}\tau }\approx \left[ \tilde{H}_{T}\left( \tau \right) ,\rho _{S}\left( t\right) \rho _{B}^{0}\right] \). In accordance with previous approximations, we have replaced \(e^{-iH_{0}\tau }\rho _{S}\left( t-\tau \right) e^{iH_{0}\tau }\) by \(\rho _{S}\left( t\right) \) since any additional term besides \(H_{0}\) would be of higher order in perturbation theory [35, 36]. In particular, this disregards dissipative effects: In our case, this approximation is valid self-consistently provided that the tunneling rates are small compared to effective Zeeman splitting \(\omega \). The integrand decays on the leads-correlation timescale \(\tau _{c}\) which is typically much faster than the timescale set by the effective Zeeman splitting, \(\omega \tau _{c}\ll 1\). This separation of timescales allows for an expansion in the small parameter \(\omega \tau \), e.g. \(\frac{g}{\omega }\left( e^{i\omega \tau }-1\right) \approx ig\tau \). We see that the first order correction can be neglected if the the bath correlation time \(\tau _{c}\) is sufficiently short compared to the timescale of the HF dynamics, that is \(g\tau _{c}\ll 1\). The latter is bounded by the total hyperfine coupling constant \(A_{\mathrm {HF}}\) (since \(\left| \left| gA^{x}\right| \right| \le A_{\mathrm {HF}}\)) so that the requirement for disregarding the first order term reads \(A_{\mathrm {HF}}\tau _{c}\ll 1\).

2.1.1.2 Second order correction

The contribution of the second term \(n=2\) in the Schwinger-Dyson expansion can be decomposed into

$$\begin{aligned} \Xi ^{\left( 2\right) }=\Xi _{\mathrm {zz}}^{\left( 2\right) }+\Xi _{\mathrm {ff}}^{\left( 2\right) }+\Xi _{\mathrm {fz}}^{\left( 2\right) }.\end{aligned}$$
(2.55)

The first term \(\Xi _{\mathrm {zz}}^{\left( 2\right) }\) contains contributions from \(H_{\Delta \mathrm {OH}}\) only

$$\begin{aligned} \Xi _{\mathrm {zz}}^{\left( 2\right) }= & {} \int _{0}^{t}d\tau \int _{0}^{\tau }d\tau _{1}\int _{0}^{\tau _{1}}d\tau _{2}\mathsf {Tr_{B}}\left( \mathcal {L}_{T}e^{-i\mathcal {L}_{0}\tau }\left[ \tilde{H}_{\Delta \mathrm {OH}}\left( \tau _{1}\right) ,\left[ \tilde{H}_{\Delta \mathrm {OH}}\left( \tau _{2}\right) ,X\right] \right] \right) \end{aligned}$$
(2.56)
$$\begin{aligned}= & {} -\int _{0}^{t}d\tau \left( g\tau \right) ^{2}\mathsf {Tr_{B}}\left[ \mathcal {L}_{T}\left( \delta A^{z}S^{z}\tilde{X}_{\tau }\delta A^{z}S^{z}-\frac{1}{2}\left\{ \delta A^{z}S^{z}\delta A^{z}S^{z},\tilde{X}_{\tau }\right\} \right) \right] \end{aligned}$$
(2.57)

Similarly, \(\Xi _{\mathrm {ff}}^{\left( 2\right) }\) which comprises contributions from \(H_{\mathrm {ff}}\) only is found to be

$$\begin{aligned} \Xi _{\mathrm {ff}}^{\left( 2\right) }= & {} \frac{g^{2}}{4\omega ^{2}}\int _{0}^{t}d\tau \left\{ \left( 1+i\omega \tau -e^{i\omega \tau }\right) \mathsf {Tr_{B}}\left[ \mathcal {L}_{T}\left( S^{+}S^{-}A^{-}A^{+}\tilde{X}_{\tau }+\tilde{X}_{\tau }S^{-}S^{+}A^{+}A^{-}\right) \right] \right. \nonumber \\&\left. +\left( 1-i\omega \tau -e^{-i\omega \tau }\right) \mathsf {Tr_{B}}\left[ \mathcal {L}_{T}\left( S^{-}S^{+}A^{+}A^{-}\tilde{X}_{\tau }+\tilde{X}_{\tau }S^{+}S^{-}A^{-}A^{+}\right) \right] \right\} .\end{aligned}$$
(2.58)

Here, we have used the following simplification: The time-ordered products which include flip-flop terms only can be simplified to two possible sequences in which \(\mathcal {L}_{+}\) is followed by \(\mathcal {L}_{-}\) and vice versa. This holds since

$$\begin{aligned} \mathcal {L}_{\pm }\mathcal {L}_{\pm }X=\left[ H_{\pm },\left[ H_{\pm },X\right] \right] =H_{\pm }H_{\pm }X+XH_{\pm }H_{\pm }-2H_{\pm }XH_{\pm }=0.\end{aligned}$$
(2.59)

Here, the first two terms drop out immediately since the electronic jump-operators \(S^{\pm }\) fulfill the relation \(S^{\pm }S^{\pm }=0\). In the problem at hand, also the last term gives zero because of particle number superselection rules: In Eq. (2.13) the time-ordered product of superoperators acts on \(X=\left[ H_{T},\rho _{S}\left( t-\tau \right) \rho _{B}^{0}\right] \). Thus, for the term \(H_{\pm }XH_{\pm }\) to be nonzero, coherences in Fock space would be required which are consistently neglected; compare Ref. [36]. This is equivalent to ignoring coherences between the system and the leads. Note that the same argument holds for any combination \(H_{\mu }XH_{\nu }\) with \(\mu ,\nu =\pm \).

Similar results can be obtained for \(\Xi _{\mathrm {fz}}^{\left( 2\right) }\) which comprises \(H_{\pm }\) as well as \(H_{\Delta \mathrm {OH}}\) in all possible orderings. Again, using that the integrand decays on a timescale \(\tau _{c}\) and expanding in the small parameter \(\omega \tau \) shows that the second order contribution scales as \({\sim }\left( g\tau _{c}\right) ^{2}\). Our findings for the first and second order correction suggest that the n-th order correction scales as \({\sim }\left( g\tau _{c}\right) ^{n}\). This will be proven in the following by induction.

2.1.1.3 n-th order correction

The scaling of the n-th term in the Dyson series is governed by the quantities of the form

$$\begin{aligned} \xi _{+-\cdots }^{\left( n\right) }\left( \tau \right) =g^{n}\int _{0}^{\tau }d\tau _{1}\int _{0}^{\tau _{1}}d\tau _{2}\ldots \int _{0}^{\tau _{n-1}}d\tau _{n}e^{i\omega \tau _{1}}e^{-i\omega \tau _{2}}\dots , \end{aligned}$$
(2.60)

where the index suggests the order in which \(H_{\pm }\) (giving an exponential factor) and \(H_{\Delta \mathrm {OH}}\) (resulting in a factor of 1) appear. Led by our findings for \(n=1,2\), we claim that the expansion of \(\xi _{+-\cdots }^{\left( n\right) }\left( \tau \right) \) for small \(\omega \tau \) scales as \(\xi _{+-\cdots }^{\left( n\right) }\left( \tau \right) \sim \left( g\tau \right) ^{n}\). Then, the \(\left( n+1\right) \)-th terms scale as

$$\begin{aligned} \xi _{-(\Delta \mathrm {OH})+-\cdots }^{\left( n+1\right) }\left( \tau \right)&= g^{n+1}\int _{0}^{\tau }d\tau _{1}\int _{0}^{\tau _{1}}d\tau _{2}\dots \int _{0}^{\tau _{n-1}}d\tau _{n}\int _{0}^{\tau _{n}}d\tau _{n+1}\left( \begin{array}{c} e^{-i\omega \tau _{1}}\\ 1\end{array}\right) e^{+i\omega \tau _{2}}\cdots \end{aligned}$$
(2.61)
$$\begin{aligned}&= g\int _{0}^{\tau }d\tau _{1}\left( \begin{array}{c} e^{-i\omega \tau _{1}}\\ 1\end{array}\right) \xi _{+-\dots }^{\left( n\right) }\left( \tau _{1}\right) \end{aligned}$$
(2.62)
$$\begin{aligned}&{ \sim }\left( g\tau \right) ^{n+1}. \end{aligned}$$
(2.63)

Since we have already verified this result for \(n=1,2\), the general result follows by induction. This completes the proof.

2.1.2 2.9.2 Adiabatic Elimination of the QD Electron

For a sufficiently small relative coupling strength \(\varepsilon \) the nuclear dynamics are slow compared to the electronic QD dynamics. This allows for an adiabatic elimination of the electronic degrees of freedom yielding an effective master equation for the nuclear spins of the QD.

Our analysis starts out from Eq. (2.35) which we write as

$$\begin{aligned} \dot{\rho }=\mathcal {W}_{0}\rho +\mathcal {W}_{1}\rho , \end{aligned}$$
(2.64)

where

$$\begin{aligned} \mathcal {W}_{0}\rho= & {} -i\left[ \omega _{0}S^{z},\rho \right] +\gamma \left[ S^{-}\rho S^{+}-\frac{1}{2}\left\{ S^{+}S^{-},\rho \right\} \right] +\Gamma \left[ S^{z} \rho S^{z}-\frac{1}{4}\rho \right] \end{aligned}$$
(2.65)
$$\begin{aligned} \mathcal {W}_{1}\rho= & {} -i\left[ H_{\mathrm {HF}},\rho \right] . \end{aligned}$$
(2.66)

Note that the superoperator \(\mathcal {W}_{0}\) only acts on the electronic degrees of freedom. It describes an electron in an external magnetic field that experiences a decay as well as a pure dephasing mechanism. In zeroth order of the coupling parameter \(\varepsilon \) the electronic and nuclear dynamics of the QD are decoupled and SR effects cannot be expected. These are contained in the interaction term \(\mathcal {W}_{1}\).

Formally, the adiabatic elimination of the electronic degrees of freedom can be achieved as follows [61]. To zeroth order in \(\varepsilon \) the eigenvectors of \(\mathcal {W}_{0}\) with zero eigenvector \(\lambda _{0}=0\) are

$$\begin{aligned} \mathcal {W}_{0}\mu \otimes \rho _{SS}=0, \end{aligned}$$
(2.67)

where \(\rho _{SS}=\left| \downarrow \right\rangle \left\langle \downarrow \right| \) is the stationary solution for the electronic dynamics and \(\mu \) describes some arbitrary state of the nuclear system. The zero-order Liouville eigenstates corresponding to \(\lambda _{0}=0\) are coupled to the subspaces of “excited” nonzero (complex) eigenvalues \(\lambda _{k}\ne 0\) of \(\mathcal {W}_{0}\) by the action of \(\mathcal {W}_{1}\). Physically, this corresponds to a coupling between electronic and nuclear degrees of freedom. In the limit where the HF dynamics are slow compared to the electronic frequencies, i.e. the Zeeman splitting \(\omega _{0}\), the decay rate \(\gamma \) and the dephasing rate \(\Gamma \), the coupling between these blocks of eigenvalues and Liouville subspaces of \(\mathcal {W}_{0}\) is weak justifying a perturbative treatment. This motivates the definition of a projection operator P onto the subspace with zero eigenvalue \(\lambda _{0}=0\) of \(\mathcal {W}_{0}\) according to

$$\begin{aligned} P\rho =\mathsf {Tr_{el}}\left[ \rho \right] \otimes \rho _{SS}=\mu \otimes \left| \downarrow \right\rangle \left\langle \downarrow \right| , \end{aligned}$$
(2.68)

where \(\mu =\mathsf {Tr_{el}}\left[ \rho \right] \) is a density operator for the nuclear spins, \(\mathsf {Tr_{el}}\dots \) denotes the trace over the electronic subspace and by definition \(\mathcal {W}_{0}\rho _{SS}=0\). The complement of P is \(Q=1-P\). By projecting the master equation on the P subspace and tracing over the electronic degrees of freedom we obtain an effective master equation for the nuclear spins in second order perturbation theory

$$\begin{aligned} \dot{\mu }=\mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}P\rho -P\mathcal {W}_{1}Q\mathcal {W}_{0}^{-1}Q\mathcal {W}_{1}P\rho \right] . \end{aligned}$$
(2.69)

Using \(\mathsf {Tr_{el}}\left[ S^{z}\rho _{SS}\right] =-1/2\), the first term is readily evaluated and yields the Knight shift seen by the nuclear spins

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}P\rho \right] =+i\frac{g}{2}\left[ A^{z},\mu \right] . \end{aligned}$$
(2.70)

The derivation of the second term is more involved. It can be rewritten as

$$\begin{aligned} -\mathsf {Tr_{el}}&\left[ P\mathcal {W}_{1}Q\mathcal {W}_{0}^{-1}Q\mathcal {W}_{1}P\rho \right] \nonumber \\&= -\mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}\left( 1-P\right) \mathcal {W}_{0}^{-1}\left( 1-P\right) \mathcal {W}_{1}P\rho \right] \end{aligned}$$
(2.71)
$$\begin{aligned}&= \int _{0}^{\infty }d\tau \,\mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}e^{\mathcal {W}_{0}\tau }\mathcal {W}_{1}P\rho \right] -\int _{0}^{\infty }d\tau \,\mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}P\mathcal {W}_{1}P\rho \right] . \end{aligned}$$
(2.72)

Here, we used the Laplace transform \(-\mathcal {W}_{0}^{-1}=\int _{0}^{\infty }d\tau \, e^{\mathcal {W}_{0}\tau }\) and the property \(e^{\mathcal {W}_{0}\tau }P=Pe^{\mathcal {W}_{0}\tau }=P\).

Let us first focus on the first term in Eq. (2.72). It contains terms of the form

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\left[ A^{+}S^{-},e^{\mathcal {W}_{0}\tau }\left[ A^{-}S^{+},\mu \otimes \rho _{SS}\right] \right] \right]= & {} \mathsf {Tr_{el}}\left[ S^{-}e^{\mathcal {W}_{0}\tau }\left( S^{+}\rho _{SS}\right) \right] A^{+}A^{-}\mu \end{aligned}$$
(2.73)
$$\begin{aligned}&-\,\mathsf {Tr_{el}}\left[ S^{-}e^{\mathcal {W}_{0}\tau }\left( S^{+}\rho _{SS}\right) \right] A^{-}\mu A^{+}\end{aligned}$$
(2.74)
$$\begin{aligned}&+\,\mathsf {Tr_{el}}\left[ S^{-}e^{\mathcal {W}_{0}\tau }\left( \rho _{SS}S^{+}\right) \right] \mu A^{-}A^{+}\end{aligned}$$
(2.75)
$$\begin{aligned}&-\,\mathsf {Tr_{el}}\left[ S^{-}e^{\mathcal {W}_{0}\tau }\left( \rho _{SS}S^{+}\right) \right] A^{+}\mu A^{-} \end{aligned}$$
(2.76)

This can be simplified using the following relations: Since \(\rho _{SS}=\left| \downarrow \right\rangle \left\langle \downarrow \right| \), we have \(S^{-}\rho _{SS}=0\) and \(\rho _{SS}S^{+}=0\). Moreover, \(\left| \uparrow \right\rangle \left\langle \downarrow \right| \) and \(\left| \downarrow \right\rangle \left\langle \uparrow \right| \) are eigenvectors of \(\mathcal {W}_{0}\) with eigenvalues \(-\left( i\omega _{0}+\alpha /2\right) \) and \(+\left( i\omega _{0}-\alpha /2\right) \), where \(\alpha =\gamma +\Gamma \), yielding

$$\begin{aligned} e^{\mathcal {W}_{0}\tau }\left( S^{+}\rho _{SS}\right)= & {} e^{-\left( i\omega _{0}+\alpha /2\right) \tau }\left| \uparrow \right\rangle \left\langle \downarrow \right| \end{aligned}$$
(2.77)
$$\begin{aligned} e^{\mathcal {W}_{0}\tau }\left( \rho _{SS}S^{-}\right)= & {} e^{+\left( i\omega _{0}-\alpha /2\right) \tau }\left| \downarrow \right\rangle \left\langle \uparrow \right| . \end{aligned}$$
(2.78)

This leads to

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\left[ A^{+}S^{-},e^{\mathcal {W}_{0}\tau }\left[ A^{-}S^{+},\mu \otimes \rho _{SS}\right] \right] \right] =e^{-\left( i\omega _{0}+\alpha /2\right) \tau }\left( A^{+}A^{-}\mu -A^{-}\mu A^{+}\right) . \end{aligned}$$
(2.79)

Similarly, one finds

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\left[ A^{-}S^{+},e^{\mathcal {W}_{0}\tau }\left[ A^{+}S^{-},\mu \otimes \rho _{SS}\right] \right] \right] =e^{+\left( i\omega _{0}-\alpha /2\right) \tau }\left( \mu A^{+}A^{-}-A^{-}\mu A^{+}\right) . \end{aligned}$$
(2.80)

Analogously, one can show that terms containing two flip or two flop terms give zero. The same holds for mixed terms that comprise one flip-flop and one Overhauser term with \({\sim } A^{z}S^{z}\). The term consisting of two Overhauser contributions gives

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\left[ A^{z}S^{z},e^{\mathcal {W}_{0}\tau }\left[ A^{z}S^{z},\mu \otimes \rho _{SS}\right] \right] \right] =-\frac{1}{4}\left[ 2A^{z}\mu A^{z}-\left[ A^{z}A^{z},\mu \right] \right] . \end{aligned}$$
(2.81)

However, this term exactly cancels with the second term from Eq. (2.72). Thus we are left with the contributions coming from Eqs. (2.79) and (2.80). Restoring the prefactors of \(-ig/2\), we obtain

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}Q\left( -\mathcal {W}_{0}^{-1}\right) Q\mathcal {W}_{1}P\rho \right]= & {} \frac{g^{2}}{4}\int _{0}^{\infty }d\tau \left[ e^{-\left( i\omega _{0}+\alpha /2\right) \tau }\left( A^{-}\mu A^{+}-A^{+}A^{-}\mu \right) \right. \nonumber \\&\left. +\,e^{+\left( i\omega _{0}-\alpha /2\right) \tau }\left( A^{-}\mu A^{+}-\mu A^{+}A^{-}\right) \right] . \end{aligned}$$
(2.82)

Performing the integration and separating real from imaginary terms yields

$$\begin{aligned} \mathsf {Tr_{el}}\left[ P\mathcal {W}_{1}Q\left( -\mathcal {W}_{0}^{-1}\right) Q\mathcal {W}_{1}P\rho \right] =c_{r}\left[ A^{-}\mu A^{+}-\frac{1}{2}\left\{ A^{+}A^{-},\mu \right\} \right] +ic_{i}\left[ A^{+}A^{-},\mu \right] , \end{aligned}$$
(2.83)

where \(c_{r}=g^{2}/\left( 4\omega _{0}^{2}+\alpha ^{2}\right) \alpha \) and \(c_{i}=g^{2}/\left( 4\omega _{0}^{2}+\alpha ^{2}\right) \omega _{0}\). Combining Eq. (2.70) with Eq. (2.83) directly gives the effective master equation for the nuclear spins given in Eq. (2.3) in the main text.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schütz, M.J.A. (2017). Superradiance-like Electron Transport Through a Quantum Dot. In: Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48559-1_2

Download citation

Publish with us

Policies and ethics