Skip to main content

Detection of Circular Shapes in Digital Images

  • Chapter
  • First Online:
Advances and Applications of Optimised Algorithms in Image Processing

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 117))

Abstract

Evolutionary computation offers many interesting algorithms in which the behavior of a group of organisms or elements seems to have some fundamentally distinct collective intelligence. This collective intelligence allows that very simple elements can form capable systems to solve highly complex tasks by interacting to each other. On the other hand, automatic circle detection in digital images has been considered as an important and complex task for the computer vision community that has devoted a tremendous amount of research seeking for an optimal circle detector. This chapter presents an algorithm for the automatic detection of circular shapes embedded into cluttered and noisy images with no consideration of conventional Hough transform techniques. The algorithm uses the encoding of three non-collinear points embedded into an edge-only image as candidate circles. Guided by the values of the objective function, the set of encoded candidate circles (charged particles) are evolved using the EMO algorithm so that they can fit into the actual circular shapes on the edge map of the image. Experimental results from several tests on synthetic and natural images with a varying range of complexity are included to validate the efficiency of the presented technique regarding accuracy, speed, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J., Tsui, K.: Toward nature-inspired computing. Commun. ACM 49(10), 59–64 (2006)

    Article  Google Scholar 

  2. Hongwei, M.: Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies. IGI Global, United States of America (2009)

    Google Scholar 

  3. Lévy, P.: From social computing to reflexive collective intelligence: the IEML research program. Inf. Sci. 180(1), 71–94 (2010)

    Article  Google Scholar 

  4. Gruber, T.: Collective knowledge systems: where the social web meets the semantic web. Web Semant: Sci, Serv Agents World Wide Web 6(1), 4–13 (2008)

    Article  Google Scholar 

  5. Teodorović, D.: Swarm intelligence systems for transportation engineering: principles and applications. Transp. Res. Part C: Emerg. Technol. 16(6), 651–667 (2008)

    Article  Google Scholar 

  6. Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)

    Article  Google Scholar 

  8. Naji-Azimi, Z., Toth, P., Galli, L.: An electromagnetism metaheuristic for the unicost set covering problem. Eur. J. Oper. Res. 205(2), 290–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. da Fontoura Costa, L., Marcondes Cesar, R., Jr.: Shape Análisis and Classification. CRC Press, Boca Raton FL. (2001)

    Google Scholar 

  10. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Academic Press, London (1990)

    Google Scholar 

  11. Yuen, H., Princen, J., Illingworth, J., Kittler, J.: Comparative study of Hough transform methods for circle finding. Image Vision Comput. 8(1), 71–77 (1990)

    Article  Google Scholar 

  12. Iivarinen, J., Peura, M., Sarela, J., Visa, A.: Comparison of combined shape descriptors for irregular objects. In: Proceedings of 8th British Machine Vision Conference, pp. 430–439. Cochester, UK (1997)

    Google Scholar 

  13. Jones, G., Princen, J., Illingworth, J., Kittler, J. Robust estimation of shape parameters. In: Proc. British Machine Vision Conf., pp. 43– 48. (1990)

    Google Scholar 

  14. Fischer, M., Bolles, R.: Random sample consensus: a paradigm to model fitting with applications to image analysis and automated cartography. CACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Bongiovanni, G., Crescenzi, P.: Parallel simulated annealing for shape detection. Comput. Vis. Image Underst. 61(1), 60–69 (1995)

    Article  Google Scholar 

  16. Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 901–905 (1994)

    Article  Google Scholar 

  17. Peura, M., Iivarinen, J.: Efficiency of simple shape descriptors. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds.) Advances in Visual Form Analysis, pp. 443–451. World Scientific, Singapore (1997)

    Google Scholar 

  18. Muammar, H., Nixon, M.: Approaches to extending the Hough transform. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing ICASSP_89, vol. 3, pp. 1556–1559 (1989)

    Google Scholar 

  19. Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough transform. In: Proceedings of IEEE Colloquium on the Hough Transform, IEEE, London (1993)

    Google Scholar 

  20. Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput. Vision Image Underst. 63, 512–526 (1996)

    Article  Google Scholar 

  21. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recogn. Lett. 11(5), 331–338 (1990)

    Article  MATH  Google Scholar 

  22. Han, J.H., Koczy, L.T., Poston, T.: Fuzzy Hough transform. In: Proceedings of 2nd International Conference on Fuzzy Systems, vol. 2, pp. 803–808 (1993)

    Google Scholar 

  23. Becker, J., Grousson, S., Coltuc, D.: From Hough transforms to integral transforms. In: Proceedings of International Geoscience and Remote Sensing Symposium, 2002 IGARSS_02, vol. 3, pp. 1444–1446 (2002)

    Google Scholar 

  24. Lutton, E., Martinez, P.: A genetic algorithm for the detection 2-D geometric primitives on images. In: Proceedings of the 12th International Conference on Pattern Recognition, vol. 1, pp. 526–528 (1994)

    Google Scholar 

  25. Yao, J., Kharma, N., Grogono, P.: Fast robust GA-based ellipse detection. In: Proceedings of 17th International Conference on Pattern Recognition ICPR-04, vol. 2, pp. 859–862. Cambridge, UK (2004)

    Google Scholar 

  26. Yuen, S., Ma, C.: Genetic algorithm with competitive image labelling and least square. Pattern Recogn. 33, 1949–1966 (2000)

    Article  MATH  Google Scholar 

  27. Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recogn. Lett. 27, 652–657 (2006)

    Article  Google Scholar 

  28. Rosin, P.L., Nyongesa, H.O.: Combining evolutionary, connectionist, and fuzzy classification algorithms for shape analysis. In: Cagnoni, S. et al. (eds.) Proceedings of EvoIASP, Real-World Applications of Evolutionary Computing, pp. 87–96 (2000)

    Google Scholar 

  29. Rosin, P.L.: Further five point fit ellipse fitting. In: Proceedings of 8th British Machine Vision Conference, pp. 290–299. Cochester, UK (1997)

    Google Scholar 

  30. Zhang, X., Rosin, P.L.: Superellipse fitting to partial data. Pattern Recogn. 36, 743–752 (2003)

    Article  MATH  Google Scholar 

  31. Andrei, N.: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213(2), 361–369 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, Q., Mahfouf, M.: A nature-inspired multi-objective optimization strategy based on a new reduced space search ing algorithm for the design of alloy steels. Eng. Appl. Artif. Intell. (2010). doi:10.1016/j.engappai.2010.01.017

  33. Birbil, Sİ., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gaafar, L.K., Masoud, S.A., Nassef, A.O.: A particle swarm-based genetic algorithm for scheduling in an agile environment. Comput. Ind. Eng. 55(3), 707–720 (2008)

    Article  Google Scholar 

  35. Chen, Y.-P., Jiang, P.: Analysis of particle interaction in particle swarm optimization. Theoret. Comput. Sci. 411(21), 2101–2115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maniezzo, V., Carbonaro, A.: Ant Colony Optimization: An Overview. Essays and Surveys in Metaheuristics, pp. 21–44. Kluwer Academic Publisher, Dordrecht (1999)

    Google Scholar 

  37. Wu, P., Yang, W.-H., Wei, N.-C.: An electromagnetism algorithm of neural network analysis—an application to textile retail operation. J. Chin. Inst. Ind. Eng. 21(1), 59–67 (2004)

    Google Scholar 

  38. Tsou, C.-S., Kao, C.-H.: Multi-objective inventory control using electromagnetism-like metaheuristic. Int. J. Prod. Res. 46(14), 3859–3874 (2008)

    Article  MATH  Google Scholar 

  39. Rocha, A., Fernandes, E.: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems. Int. J. Comput. Math. 86(10), 1932–1946 (2009)

    Article  MATH  Google Scholar 

  40. Rocha, A., Fernandes, E.: Modified movement force vector in an electromagnetism-like mechanism for global optimization. Optim. Meth. Softw. 24(2), 253–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Birbil, Sİ., Fang, S.-C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. J. Global Optim. 30(2), 301–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan. Knowl.-Based Syst. 23(2), 77–85 (2010)

    Article  Google Scholar 

  43. Yurtkuran, A., Emel, E.: A new hybrid electromagnetism-like algorithm for capacitated vehicle routing problems. Expert Syst. Appl. 37(4), 3427–3433 (2010)

    Article  Google Scholar 

  44. Jhang, J.-Y., Lee, K.-C.: Array pattern optimization using electromagnetism-like algorithm. AEU Int. J. Electron. Commun. 63(6), 491–496 (2009)

    Article  Google Scholar 

  45. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20, 100–106 (1977)

    Article  MATH  Google Scholar 

  46. Van Aken, J.R.: An efficient ellipse drawing algorithm. CG&A, 4(9), 24–35 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oliva, D., Cuevas, E. (2017). Detection of Circular Shapes in Digital Images. In: Advances and Applications of Optimised Algorithms in Image Processing. Intelligent Systems Reference Library, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-48550-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48550-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48549-2

  • Online ISBN: 978-3-319-48550-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics