Skip to main content

Soil Degradation in Peninsula Valdes: Causes, Factors, Processes, and Assessment Methods

  • Chapter
  • First Online:
Book cover Late Cenozoic of Península Valdés, Patagonia, Argentina

Abstract

In semiarid rangelands where the anthropogenic impact is currently increasing, as occurs in the rangelands of the Península Valdés, the detrimental impacts of soil degradation on land resources became really dramatic. This chapter presents a review on the current knowledge of soil degradation in the Península Valdés rangelands. Section 1 introduces the chapter, Sect. 2 focuses on soil degradation main processes, factors and causes, and Sect. 3 presents a review of soil degradation assessment methods and several soil degradation studies carried out since 1990 in the Península Valdés region. Water and wind erosion are the degradation processes that are most strongly evidenced. Major causes of soil degradation are attributed to a combination of climatic and anthropic factors, with overgrazing being perceived to be a major factor. Four key causes associated with overgrazing in the Península Valdés region rangelands are described: (1) Poor range management with respect to flock distribution and overstocking, (2) Limited access to information, (3) Top-down and largely ineffective government policy, and (4) Overdependence on grazing systems for sustained livelihoods. Assessment methods for assessing soil degradation include: expert judgment, remote sensing, productivity changes, field monitoring, pilot studies at farm level based on field criteria and expert opinion, and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams A, Parsons A, Wainwright J (1995) Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona. Geomorphology 13:37–48

    Article  Google Scholar 

  • Ares J, Beeskow AM, Bertiller M et al (1990) Structural and dynamic characteristics of overgrazed lands of northern Patagonia, Argentina. In: Breymeyer A (ed) Managed grasslands. Elsevier, Amsterdam, pp 149–175

    Google Scholar 

  • Blanco PD et al (2015) Using the distributed model EROSAR and remotely sensed data for regional assessment of soil water erosion in semi-arid rangelands. 3rd UNCCD Scientific Conference, 9–12 March 2015, Cancun, Mexico

    Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, New York

    Google Scholar 

  • Barrett E, Hamilton M (1986) Potentialities and problems of satellite remote sensing with special reference to arid and semiarid regions. J Climatic Change 9:167–186

    Article  Google Scholar 

  • Bastin G, Sparrow A, Pearce G (1993) Grazing gradients in central Australian rangelands: ground verification of remote sensing-based approaches. Rangeland J 15:217–233

    Article  Google Scholar 

  • Beeskow A, Elissalde N, Rostagno M (1995) Ecosystem changes associated with grazing intensity on the Punta Ninfas rangelands of Patagonia, Argentina. J Range Manage 48:517–522

    Article  Google Scholar 

  • Bestelmeyer B et al (2003) Development and use of state-and-transition models for rangelands. J Range Manage 56:114–126

    Article  Google Scholar 

  • Bestelmeyer BT, Ward JP, Havstad KM (2006) Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone. Ecology 87:963–973

    Article  Google Scholar 

  • Bisigato AJ, Villagra PE, Ares JO (2009) Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. J Arid Environ 73:182–191

    Article  Google Scholar 

  • Blanco P (2010) Ph.D. thesis: soil erosion assessment and spatial modelling in NE of Chubut. Escuela para Graduados Alberto Soriano, Faculty of Agronomy, University of Buenos Aires

    Google Scholar 

  • Blanco PD et al (2008) Grazing impacts in vegetated dunefields: predictions from spatial pattern analysis. Rangeland Ecol Manage 61:194–203

    Article  Google Scholar 

  • Bowman D (2009) Fire in the earth system. Science 324:481–484

    Article  Google Scholar 

  • Cerdà A (2001) Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur J Soil Sci 52:59–68

    Article  Google Scholar 

  • Chartier M, Rostagno M (2006) Soil erosion thresholds and alternative states in northeastern Patagonian rangelands. Rangeland Ecol Manage 59:616–624

    Article  Google Scholar 

  • Chartier M, Rostagno M, Roig F (2009) Soil erosion rates in rangelands of northeastern Patagonia: a dendrogeomorphological analysis using exposed shrub roots. Geomorphology 106:344–351

    Article  Google Scholar 

  • Chuvieco E, Kasischke ES (2007) Remote sensing information for fire management and fire effects assessment. JGR Biogeosciences 112:1–8

    Google Scholar 

  • Cohen W, Goward S (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545

    Article  Google Scholar 

  • Cooke R, Warren A, Goudie A (1993) Desert geomorphology. University College London Press, London

    Google Scholar 

  • De Stoppelaire G et al (2004) Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National seashore: impact of horses. Environ Manage 34:642–649

    Article  Google Scholar 

  • del Valle H, Rostagno M, Bouza P (2000) Los médanos del sur de Península Valdés: Su dinámica y los cambios asociados en los suelos y en la vegetación, XVII Congreso Argentino de la Ciencia del Suelo. 11–14 Apr 2000. Asociación Argentina de la Ciencia del Suelo, Mar del Plata, Buenos Aires, Argentina

    Google Scholar 

  • del Valle H et al (2008) Sand dune activity in north-eastern Patagonia. J Arid Environ 72:411–422

    Article  Google Scholar 

  • del Valle H et al (2013) Assessment of land degradation using shannon entropy: approach on POLSAR images in patagonian coastal deserts. Geofocus 13–2:84–111

    Google Scholar 

  • Dregne H (1977) Desertification of arid lands: the human face of desertification. Econ Geogr 53:322–331

    Article  Google Scholar 

  • Elissalde N, Miravalles H (1983) Evaluación de los campos de pastoreo de Peninsula Valdes. Contribution 70, Central National Patagonico, Puerto Madryn, Chubut, Argentina

    Google Scholar 

  • Falk D, McKenzie A, Black E (2007) Cross-scale analysis of fire regimes. Ecosystems 10:809–823

    Article  Google Scholar 

  • Gares P (1990) Eolian processes and dune changes at developed and undeveloped sites, Island Beach, New Jersey. In: Nordstrom K et al (eds) Coastal dunes: form and process. Wiley, Chichester, pp 361–378

    Google Scholar 

  • Hardtke L, Blanco P, del Valle H (2015) Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery. Int J Appl Earth Obs Geoinf 38:25–35

    Article  Google Scholar 

  • Herbel C (1979) Utilization of grass and shrublands of the south-western United States. In: Walker BH (ed) Management of semi-arid ecosystems. Elsevier, Amsterdam, pp 161–203

    Chapter  Google Scholar 

  • Hesp P (2002) Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology 48:245–268

    Article  Google Scholar 

  • Hesp P, Hyde R (1996) Flow dynamics and geomorphology of a trough blowout. Sedimentology 43:505–525

    Article  Google Scholar 

  • Holecheck J, Pieper R, Herbel C (2003) Range management: principles and practices. Pearson, USA, 456 pp (5th editions)

    Google Scholar 

  • Hosmer D, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Johnson D, Watson-Stegner D, Johnson D et al (1987) Proisotropic and proanisotropic processes of pedoturbation. Soil Sci 143:278–292

    Article  Google Scholar 

  • Koohafkan P, Lantieri D, Nachtergaele F (2003) Land degradation assessment in drylands (LADA): guidelines for a methodological approach. Land Water Develop Div, FAO, Rome

    Google Scholar 

  • Lal R (1988) Soil erosion by wind and water: problems and proposals. In: Lal R (ed) Soil erosion research methods. The Soil Erosion and Water Conservation Society

    Google Scholar 

  • Lange R (1969) Grazing impact in relation to livestock watering points. J Range Manag 22:396–400

    Article  Google Scholar 

  • Livingstone I, Warren A (1996) Aeolian geomorphology: an introduction. Longman, Essex (221 p)

    Google Scholar 

  • Melton F (1940) A tentative classification of sand dunes: its application to dune history in the southern High Plains. J Geol 48:113–174

    Article  Google Scholar 

  • Michaelides K et al (2009) Vegetation controls on small-scale runoff and erosion dynamics in a degrading dryland environment. Hydrol Process 23:1617–1630

    Article  Google Scholar 

  • Mulder V et al (2011) The use of remote sensing in soil and terrain mapping: a review. Geoderma 162:1–19

    Article  Google Scholar 

  • Murphy B, Williamson G, Bowman D (2011) Fire regimes: moving from a fuzzy concept to geographic entity. New Phytol 192:316–318

    Article  Google Scholar 

  • Ocariz P, Rostagno M, Degorgue G (2004) Conductoras y pasajeras: El rol del quilembai (Chuquiraga avellanedae) y la flechilla (Stipa tenuis) en la conservación del suelo de un sitio ecológico del noreste de Chubut. II Reunión Binacional de Ecología, Mendoza, Argentina

    Google Scholar 

  • Parsons A, Abrahams A, Simanton J (1992) Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona. J Arid Environ 22:107–115

    Google Scholar 

  • Paruelo JM et al (1998) The climate of Patagonia general patterns and controls on biotic processes. Ecología Austral 8:85–104

    Google Scholar 

  • Pickup G, Bastin G, Chewings V (1994) Remote-sensing-based condition assessment for nonequilibrium rangelands under large-scale commercial grazing. Ecol Appl 4:497–517

    Article  Google Scholar 

  • Poesen J et al (1998) Variation of rock fragment cover and size along semiarid hillslopes: a case-study from southeast Spain. Geomorphology 23:323–335

    Article  Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger E (ed) Climate of central and South America. World Survey of Climatology. Elsevier, Amsterdam, pp 57–69

    Google Scholar 

  • Pye D (1982) Morphological development of coastal dunes in a humid tropical environment Cape Bedford and Cape Flattery, North Queensland. Geografiska Annaler 64(A):212–227

    Google Scholar 

  • Ravi S et al (2010) Land degradation in drylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 116:236–245

    Article  Google Scholar 

  • Renard K, Simanton J, Osborn H (1974) Applicability of the universal soil loss equation to semiarid rangeland conditions in the Southwest. Hydrology and Water Resources in the South-west, Water Resources Research Center, University of Arizona, Tucson 4:18–31

    Google Scholar 

  • Rostagno M (1989) Infiltration and sediment production as affected by soil surface conditions in a shrubland of Patagonia, Argentina. J Range Manage 42:382–385

    Article  Google Scholar 

  • Rostagno C, Beeskow A (2000) Soil erosion, shrub encroachment and ecosystem resilience of two ecological sites of NE Patagonia. XI conference of International Soil Conservation Organization (ISCO) Buenos Aires-22

    Google Scholar 

  • Rostagno D, Degorgue G (2011) Desert pavements as indicators of soil erosion on aridic soils in north-east Patagonia (Argentina). Geomorphology 134:224–231

    Article  Google Scholar 

  • Rostagno M, del Valle H, Buschiazzo D (2004) La erosión eólica. In: González M, Bejerman N (eds.). Peligrosidad Geológica en Argentina. ASAGAI. (CD)

    Google Scholar 

  • Rostagno M, Defosse G, del Valle H (2006) Postfire vegetation dynamics in three rangelands of Northeastern Patagonia, Argentina. Rangeland Ecol Manage 59:163–170

    Article  Google Scholar 

  • Schlesinger W et al (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Article  Google Scholar 

  • Simanton J, Rawitz E, Shirley E (1984) Effects of rock fragments on erosion of semiarid rangelands. In: Nichols J et al (eds) Erosion and productivity of soils containing rock fragments. Soil Science Society of America Special Publication No. 13, Madison, Wisconsin, USA, pp 65–72

    Google Scholar 

  • Soriano A, Movia CP (1986) Erosión y desertización en la Patagonia. Interciencia 11:77–83

    Google Scholar 

  • Tueller P, Lorain G (1973) Application of remote sensing techniques for analysis of desert biome validation studies. Utah State University. US/IBP Desert Biome Digital Collection

    Google Scholar 

  • van de Koppel J, Rietkerk M, Weissing F (1997) Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol Evol 12:352–356

    Article  Google Scholar 

  • Verstappen H (1968) On the origin of longitudinal (seif) dunes. Zeitschrift fur Geomorphologie NF 12:200–220

    Google Scholar 

  • Villagra P et al (2009) Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: implications for their management. J Arid Environ 73:202–211

    Article  Google Scholar 

  • Vrieling A (2006) Satellite remote sensing for water erosion assessment: a review. Catena 65(1):1:2–18

    Google Scholar 

  • Wainwright J, Parsons A, Abrahams A (1995) A simulation study of the role of rain drop erosion in the formation of desert pavements. Earth Surf Proc Land 20:277–291

    Article  Google Scholar 

  • Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management for rangelands not a equilibrium. J Range Manag 42:266–274

    Article  Google Scholar 

  • Wilcox B, Breshears D, Seyfried M (2003) Water balance onrangelands. In: Encyclopedia of water science. Dekker, New York, pp 791–794

    Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the valuable suggestions made by Dr. Gerardo Bocco Verdinelli (UNAM) and Dr. Juan Esteban Panebianco (INCITAP). Also, Pablo Bouza y Andrés Bilmes provided valuable suggestions that greatly improved the manuscript. Comisión Nacional de Actividades Espaciales from Argentina supplied the satellite images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula D. Blanco .

Editor information

Editors and Affiliations

Glossary

Erosivity

Potential ability of soil, regolith or other weathered material to be eroded by rain, wind, or surface runoff

Erodibility

Resistance of soils to erosion based on their physical and chemical characteristics such as soil texture, organic matter or structure)

Desert pavements

It is a desert surface covered with closely packed, interlocking angular or rounded rock fragments

Ecological sites

A distinctive kind of land with specific physical characteristics that differs from other kinds of land in its ability to produce a distinctive kind and amount of vegetation

Horton overland flow

Describes the tendency of water to flow horizontally across land surfaces when rainfall has exceeded infiltration capacity and depression storage capacity

Overgrazing

It occurs when plants are exposed to intensive grazing for extended periods of time, or without sufficient recovery periods

Anthropic

Refers to being associated with humans, influenced by humans or taking place during human existence

Pattern

The arrangement and composition of the patches that compose a landscape

Trampling

The mechanical destruction and mortality of ground level vegetation by animals

Piosphere

The zone of influence of grazing on a region’s vegetation and soil

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Blanco, P.D., Hardtke, L.A., Rostagno, C.M., del Valle, H.F., Metternicht, G.I. (2017). Soil Degradation in Peninsula Valdes: Causes, Factors, Processes, and Assessment Methods. In: Bouza, P., Bilmes, A. (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-48508-9_8

Download citation

Publish with us

Policies and ethics